K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023

a: Gọi giao điểm của AG với BC là E

Xét ΔABD có

G là trọng tâm

E là giao điểm của AG với BD

Do đó: E là trung điểm của BD và AG=2/3AE

Xét ΔAHD có \(\dfrac{AG}{AE}=\dfrac{AM}{AD}=\dfrac{2}{3}\)

nên GM//ED

=>GM//BD

mà BD\(\subset\left(BCD\right)\) và GM không thuộc mp(BCD)

nên GM//(BCD)

b: Gọi giao của AH với BC là F

Xét ΔABC có

H là trọng tâm

F là giao điểm của AH với BC

Do đó: F là trung điểm của BC và AH=2/3AF

Xét ΔAGE có \(\dfrac{AH}{AF}=\dfrac{AG}{AE}=\dfrac{2}{3}\)

nên HG//FE

mà \(FE\subset\left(BCD\right)\);HG không thuộc(BCD)

nên HG//(BCD)

31 tháng 10 2023

Vẽ hình minh họa dc kh ạ

 

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
6 tháng 4 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

22 tháng 9 2023

Tham khảo:

a) Ta có: M là trọng tâm của tam giác BCD

Nên M nằm trên trung tuyến BI (1)

Ta có: N là trọng tâm của tam giác ACD

Nên N nằm trên trung tuyến AI (2)

Từ (1) và (2) suy ra M và N thuộc mp (ABI)

b) Gọi H, K lần lượt là trung điểm của AG, BG

Ta có: HK // AB

          AB // MN

Suy ra MN // HK

Theo định lý Ta-let, ta có: \(\frac{{GM}}{{GH}} = \frac{{GN}}{{GK}} = \frac{{MN}}{{HK}}(1)\)

Ta có:\(\frac{{HK}}{{AB}} = \frac{1}{2},\frac{{MN}}{{AB}} = \frac{1}{3}\)

Do đó \(\frac{{MN}}{{AB}}:\frac{{HK}}{{AB}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{HK}} = \frac{2}{3}(2)\)

Từ (1) và (2) suy ra\(\frac{{GM}}{{GH}} = \frac{2}{3}GH = \frac{1}{2}GA \Rightarrow \frac{{GM}}{{\frac{1}{2}GA}} = \frac{2}{3} \Rightarrow \frac{{GM}}{{GA}} = \frac{1}{3}\)

Chứng minh tương tự ta được\(\frac{{GN}}{{GB}} = \frac{1}{3}\)

c) Gọi H, K lần lượt là trung điểm của BC, BD

Tam giác AHD có:\(\frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)

Suy ra: QM // AD

Do đó, tam giác QGM đồng dạng với tam giác DGA

Nên D, G, Q thẳng hàng

Ta có: QM // AD nên \(\frac{{QM}}{{AD}} = \frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)

Mà \(\frac{{QM}}{{AD}} = \frac{{QG}}{{GD}}\)

Do đó:\(\frac{{QG}}{{GD}} = \frac{1}{3}\)

Chứng minh tương tự ta được\(\frac{{GP}}{{GC}} = \frac{1}{3}\)

Suy ra điều cần chứng minh.

20 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I là trung điểm của CD.

Vì G 1  là trọng tâm của tam giác ACD nên G 1   ∈   A I

Vì G 2  là trọng tâm của tam giác BCD nên G 2   ∈   B I

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

A B   ⊂   ( A B C )   ⇒   G 1 G 2   / /   ( A B C )

Và A B   ⊂   ( A B D )   ⇒   G 1 G 2   / /   ( A B D )

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Tam giác BCE có E là trung điểm AD

Suy ra:\(\frac{{BG}}{{BE}} = \frac{{BI}}{{BC}} = \frac{2}{3}\)

Theo Ta lét, IG //CE

 Mà CE thuộc (ACD)

Suy ra: IG // (ACD)

6 tháng 10 2017

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Gọi E, F, H là trung điểm của BC, CD, BD

Ta có:\({G_1}\) là trọng tâm tam giác ABC, suy ra\(\frac{{A{G_1}}}{{AE}} = \frac{2}{3}\)

\({G_3}\)là trọng tâm tam giác ABD, suy ra\(\frac{{A{G_3}}}{{AH}} = \frac{2}{3}\)

Suy ra tam giác AEH có\(\frac{{A{G_1}}}{{AE}} = \frac{{A{G_3}}}{{AH}}\) nên \({G_1}{G_3}//EH\)

Mà EH thuộc (BCD) nên \({G_1}{G_3}//(BCD)\)

Tương tự ta có:\({G_2}{G_3}//(BCD)\)

Do đó, \({G_1}{G_2}{G_3}//(BCD)\)

b) Ta có: \({G_1}{G_2}{G_3}//(BCD)\) nên \({G_1}{G_2} // BD\)

mà \({G_3}\) là điểm chung của hai mặt phẳng

Từ \({G_3}\) kẻ \({G_3}x\) sao cho \({G_3}x//BD\)

Vậy \({G_3}x\) là giao tuyến cần tìm.