K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

a) Gọi ƯCLN của 2n + 1 và 6n + 5 là d.

=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 5 - (6n + 3) chia hết cho d

=> 2 chia hết cho d.

Mà 2n + 1 là số lẻ không chia hết cho d => d = 1

=> 2n + 1 và 6n + 5 là một cặp số nguyên tố.

b) Gọi ƯCLN của 3n + 2 và 5n + 3 là d

=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d

=> 15n + 10 - (15n + 9) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 3n + 2 và 5n + 3 là một cặp số nguyên tố (đpcm)

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

19 tháng 5 2016

\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

19 tháng 5 2016

sử dụng qui nạp: 
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*) 
(*) đúng khi n= 1 
giả sử (*) đúng với n= k, ta có: 
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1) 
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta: 
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)² 
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

16 tháng 11 2021

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8

1 tháng 9 2015

a) 3n+2-2n+2+3n-2n

=(3n+2+3n)-(2n+2-2n)

=3n(33+1)-2n(22+1)

=3n.10-2n.5

Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10

    3n.10 chia hết cho 10 nên 

3n.10-2n.5 chia hết cho 10

=>3n+2-2n+2+3n-2n chia hết cho 10

b)

  3n+3+3n+1+2n+3+2n+2

=3n+1(32+1)+2n+2(2+1)

=3n+1.2.5+2n+1.3

=3.2.3n.5+2.3.2n+1

=3.2(3n.5+2n+1) chia hết cho 6

18 tháng 6 2019

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

18 tháng 6 2019

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12