K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Sửa đề:

\(3a^3+6b^3=a^3+a^3+a^3+b^3+b^3+b^3+b^3+b^3+b^3\)

\(\ge9\sqrt[9]{a^3.a^3.a^3.b^3.b^3.b^3.b^3.b^3.b^3}=9\sqrt[9]{a^9.b^{18}}=9ab^2\)

19 tháng 8 2017

đề đúng rồi , bài cậu làm cũng đúng

3 tháng 1 2017

\(3a^3+7b^3\ge3a^3+6b^3\)

\(=3a^3+3b^3+3b^3\)

\(\ge3\sqrt[3]{3.a^3.3.b^3.3.b^3}=9ab^2\)

Dấu = xảy ra khi a = b = 0

3 tháng 1 2017

\(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\frac{7}{2}b^3.\frac{7}{2}b^3}=ab^2.3\sqrt[3]{\frac{147}{4}}>9ab^2\)

4 tháng 8 2017

Ta có:

\(3a^3+7b^3\ge3a^3+6b^3\)

Dấu "=" xảy ra <=> b=0

Mặt khác :

\(3a^3+6b^3=3a^3+3b^3+3b^3\ge9ab^2\)(Theo bđt Cô-si)

=> đpcm 

 Mih ko chắc đug nhưg mà thấy avatar để hih chị hương là vào liền

Kb nha (Fan ECADCA)

1 tháng 8 2016

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{7a}{7b}=\frac{5c}{5d}\)

\(\Rightarrow\frac{a}{b}=\frac{7a+5c}{7b+5d}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2018

Lời giải:

Áp dụng BDDT AM-GM ta có:

\(a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}\)

\(\Rightarrow 3(a^3+2b^3)\geq 9ab^2\)

Vì \(b\geq 0\Rightarrow b^3\geq 0\Rightarrow b^3+3(a^3+2b^3)\ge 3(a^3+2b^3)\geq 9ab^2\)

hay \(3a^3+7b^3\geq 9ab^2\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a^3=b^3\\ b^3=0\end{matrix}\right.\Leftrightarrow a=b=0\)

19 tháng 7 2018

\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)

Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)

Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)

\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 7 2018

sos là giúp đở = cứu ; helps cũng vậy

22 tháng 11 2017

\(3a^2+3b^2=10ab\)

\(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow3a^2-ab-9ab+3b^2=0\)

\(\Rightarrow\left(3a^2-ab\right)-\left(9ab-3b^2\right)=0\)

\(\Rightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)

\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=-3a\\b=\dfrac{a}{3}\end{matrix}\right.\)

Với \(b=-3a,\)có :

\(P=\dfrac{-3a-a}{-3a+a}=\dfrac{-4a}{-2a}=2\)

Với \(b=\dfrac{a}{3},\)có :

\(P=\dfrac{\dfrac{a}{3}-a}{\dfrac{a}{3}+a}=\dfrac{\dfrac{a}{3}-\dfrac{3a}{3}}{\dfrac{a}{3}+\dfrac{3a}{3}}=\dfrac{-\dfrac{2a}{3}}{\dfrac{4a}{3}}=-\dfrac{2a}{3}.\dfrac{3}{4a}=-\dfrac{1}{2}\)

( Nếu sai thì cho mk xin lỗi nha bn , tại mk ko chắc lắm )

1) a³ + b³ + c³ - 3abc

=(a + b)(a² - ab + b²) + c³ - 3abc

=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²

=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²

=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)

=(a + b + c)(a² + b² + c² - ab - bc - ca)

20 tháng 8 2021

2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)

\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)

\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)

\(\Rightarrow\left(1\right)\) đúng (đpcm)