K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

Gọi 1 ước nguyên tố bất kì của 1.2.3.4.......2011 - 1 là p

Nếu p ​\(\le\) 2011 thì 1.2.3.4.......2011 chia hết cho p

mà 1x2x3x.........x2011-1 chia hết cho p

=> 1 chia hết cho p (vô lí).

Vậy p > 2011

3 tháng 8 2024

:)

20 tháng 8 2017

Đề sai... VD nhá... 3 là snt. 23-1=7 có 2 ước 2<3... Vô lí...

20 tháng 8 2017

Nhầm !~ Bài này tớ chịu !~ Sr TT

27 tháng 4 2018

1. Khi chia một số tự nhiên A lớn hơn 2 cho 4 thì ta được các số dư 0, 1, 2, 3 . Trường hợp số dư là 0 và 2 hai thì A là hợp số, ta không xột chỉ xột trường hợp số dư là 1 hoặc 3

  Với mọi trường hợp số dư là 1 ta có  A =  4 n   ±   1

  Với trường hợp số dư là 3 ta có A =  6 n   ±   1

Ta có thể viết  A = 4m + 4 – 1

                           =  4(m + 1) – 1

Đặt  m + 1 = n, ta có  A = 4n – 1

2.     Khi chia số tự nhiên A cho 6 ta có các số dư 0, 1, 2, 3, 4, 5. Trường hợp số dư 0, 2, 3, 4. Ta có A chia hết cho 2 hoặc A chia hết cho 3 nên A là hợp số

Trường hợp dư 1 thì  A = 6n + 1

Trường hợp dư 5 thì   A = 6m + 5    

                                       = 6m + 6 – 1

                                       6(m + 1 ) – 1

Đặt m + 1 = n     Ta có  A = 6n – 1

Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2

\(\Rightarrow\) p có dạng 2n+1 (k thuộc N, k > 0) 
Xét 2 TH : 
+ k chẵn(k = 2n) => p = 2k+1 = 2.2n + 1 = 4n+1 
+ k lẻ (k = 2n-1) => p = 2k+1 = 2.(2n-1) + 1 = 4n-1 
...Vậy p luôn có dạng 4n+1 hoặc 4n-1 

9 tháng 10 2023

Lần đầu tiên, trường hợp hợp lý khi p là một số chẵn. Vì p là số nguyên tố nên p không thể chia hết cho 2. Điều này đồng nghĩa với công việc p phải có dạng 4n + 2. If ta viết p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai và p không thể là một số chẵn.

Tiếp theo, trường hợp hợp lý khi p là một số lẻ. Giả sử p không phải là dạng 4n + 1 hoặc 4n - 1. Ta nhận xét hai trường hợp hợp:

  1. p có dạng 4n: If p = 4n, ta có thể rút gọn thành p = 2(2n). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.

  2. p có dạng 4n + 2: If p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.

Vì đã phản ánh cả hai trường hợp, ta kết luận rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n - 1.

9 tháng 10 2023

Lần đầu tiên, trường hợp hợp lý khi p là một số chẵn. Vì p là số nguyên tố nên p không thể chia hết cho 2. Điều này đồng nghĩa với công việc p phải có dạng 4n + 2. If ta viết p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai và p không thể là một số chẵn.

Tiếp theo, trường hợp hợp lý khi p là một số lẻ. Giả sử p không phải là dạng 4n + 1 hoặc 4n - 1. Ta nhận xét hai trường hợp hợp:

  1. p có dạng 4n: If p = 4n, ta có thể rút gọn thành p = 2(2n). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.

  2. p có dạng 4n + 2: If p = 4n + 2, ta có thể rút gọn thành p = 2(2n + 1). Như vậy, p chia hết cho 2, kiên cố với giả định rằng p là số nguyên tố. Do đó, giả thiết ban đầu là sai.

Vì đã phản ánh cả hai trường hợp, ta kết luận rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n - 1.