K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

1 tháng 7 2018

còn câu b ai giúp m vs

2 tháng 7 2018

a, \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy=x^2-xy+y^2+3xy=x^2+2xy+y^2=\left(x+y\right)^2=1\)

b, tương tự a

c, Sửa đề Cho a+b=1. Tính giá trị của các biểu thứ :A= a3+b3+3ab(a2+b2)+ 6a2b2(a+b)

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay a+b=1 vào A ta có:

\(A=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

d. \(B=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=\left(x+y\right)\left(x+y-4\right)+1\)

Thay x+y=3 vào B ta có:

\(B=3\left(3-4\right)+1=3.\left(-1\right)+1=-3+1=-2\)

19 tháng 9 2016

a) Vì x + y = 1 => ( x + y )= 1

=> x+ 3x2y + 3xy+ y= 1

=> x3 + y3 + 3xy ( x + y ) = 1

=> x3 + y3 +3xy = 1 (do x+y=1)

b) x-y=1 => (x-y)3=1

=> x- 3x2y + 3xy2 -y3 = 1

=> x3 -y3 - 3xy (x - y) = 1 

=> x3 - y3 -3xy =1 (do x-y=1) 

19 tháng 9 2016

x + y = 1

=> (x + y)= 1

<=> x3 + y+ 3x2y + 3xy= 1

<=> x3 + y+ 3xy (x+y) = 1

<=> x3 + y+ 3xy = 1

Vậy ... = 1

 

x - y = 1

=> (x - y)= 1

<=> x- y- 3x2y + 3xy= 1

<=> x- y- 3xy (x - y) = 1

<=> x- y3 - 3xy = 1

Vậy ... = 1

14 tháng 9 2020

\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)

\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)

\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)

\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)

\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)

\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)

14 tháng 9 2020

A = x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 13 - 3xy.0

= 1 - 0 = 1

Vậy A = 1

b) B = x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1 + 0 = 1

Vậy B = 1

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

Vậy M = 1

d) x + y = 2

⇔ ( x + y )2 = 4

⇔ x2 + 2xy + y2 = 4

⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )

⇔ 2xy = -6

⇔ xy = -3

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

            = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

            = ( x + y )3 - 3xy( x + y )

            = 23 - 3.(-3).(2)

            = 8 + 18 = 26

14 tháng 6 2016

Các bài này đưa về dạng Hằng đẳng thức là được . Làm ra dài lắm bạn ạ !

14 tháng 6 2016

Ns nghe dễ lắm, lm thử đee =))

12 tháng 7 2024

12 tháng 7 2024

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)

15 tháng 8 2018

a)  \(x+y=1\)

=>   \(\left(x+y\right)^3=1\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=1\)

<=>  \(x^3+y^3+3xy=1\)

b)  \(x-y=1\)

=>  \(\left(x-y\right)^3=1\)

<=>  \(x^3-y^3-3xy\left(x-y\right)=1\)

<=>  \(x^3-y^3-3xy=1\)

10 tháng 6 2023

A=x^3 + y^3 + 3xy(x+y)
  =x+3x^y+3xy^2+y^3
  =(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
  =(x+y)^2+4=4+4=8

C=x^3+y^3+3xy(x+y)+7(x+y)

  =(x+y)^3+7(x+y)
  =2^3+7.2
  =8+14=22