ve tam giac ABC bieu do 3 canh la 3cm 4 cm 5cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H M x
a) Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 9 + 16 = 25
Suy ra: BC2 = AB2 + AC2
Do đó: \(\Delta ABC\) vuông tại A.
b) Xét hai tam giác vuông ABH và DBH có:
AB = BD (gt)
BH: cạnh huyền chung
Vậy: \(\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\) (hai góc tương ứng)
Do đó: BH là tia phân giác của \(\widehat{ABC}\).
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}.BC=\dfrac{1}{2}.5=\dfrac{5}{2}\) (cm) (theo định lí đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
Do đó: \(\Delta ABM\) cân tại M (đpcm).
1) Xét 2 tam giác vuông ΔACH và ΔBCH ta có:
AC = AB (tam giac ABC can tai C)
CH: cạnh chung
=> ΔACH = ΔBCH (c.h - c.g.v)
=> AH = BH (2 cạnh tương ứng)
=> H là trung điểm của AB
2) Có: ΔACH = ΔBCH (câu 1)
\(\Rightarrow\widehat{ACH}=\widehat{BCH}\) (2 góc tương ứng)
Xét ΔΔCD và ΔBCD ta có:
AC = AB (tam giac ABC can tai C)
\(\widehat{ACH}=\widehat{BCH}\left(cmt\right)\)
CD: cạnh chung
=> ΔACD = ΔBCD (c - g - c)
=> AD = BD (2 cạnh tương ứng)
=> Tam giác ADB cân tại D
3) Xét ΔADK và ΔADH ta có:
AK = AH (GT)
\(\widehat{KAD}=\widehat{HAD}\left(GT\right)\)
AD: cạnh chung
=> ΔADK = ΔADH (c - g - c)
\(\Rightarrow\widehat{AKD}=\widehat{AHD}\) (2 góc tương ứng)
Mà: \(\widehat{AHD}=90^0\Rightarrow\widehat{AKD}=90^0\)
=> AK ⊥ DK
Hay: AC ⊥ DK
4) Có: H là trung điểm của AB (câu 1)
=> \(AH=\frac{1}{2}AB=\frac{1}{2}.8=4\left(cm\right)\)
ΔAHD vuông tại H. Áp dụng định lý Pitago ta có:
AD2 = AH2 + DH2
=> DH2 = AD2 - AH2 = 52 - 42 (cm)
=> DH2 = 25 - 16 = 9 (cm)
=> DH = 3 (cm)
c.cao của hình chữ nhật là 72.2:6=24(cm)
S của tam giác sau khi mở rộng là
(6+3).24:2=108(cm vuông)
4cm 3cm 5cm