Tìm các chữ số a,b:
1a6b chia hết cho 2,cho9,cho5 dư 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12=22.3, 18=2.32, 27=33 nên BCNN(12,18,27)=22.33=108
a) Gọi x là số có 3 chữ số lớn nhất cần tìm, suy ra x chia hết cho 108
Suy ra x=108.k. Vì x có 3 chữ số nên x=108.k<1000 suy ra k lớn nhất là 9.
Vậy x=9.108=972
b) Gọi y là số có 4 chữ số cần tìm, suy ra y chia 108 dư 1
Suy ra y=108k+1. Vì y có 4 chữ số nên y=108k+1>999 suy ra k nhỏ nhất là 10.
Vậy y=10.108+1=1081
c) Gọi a là số 4 chữ số cần tìm, suy ra a=12k+10
suy ra a-16=12k-6=6(2k-1) chia hết cho 18. Suy ra 2k-1 chia hết cho 3.
Suy ra 2k-1-3=2(k-2) chia hết cho 3. Suy ra k=3m+2 nên a=12(3m+2)+10=36m+34
Lại có a-25=36m+9=9(4m+1) chia hết cho 27 nên 4m+1 chia hết cho 3
suy ra m+1 chia hết cho 3, suy ra m=3n+2. Suy ra a=36(3n+2)+34=108n+106
Vì a có 4 chữ số nên a=108n+106>999, suy ra n nhỏ nhất là 9.
Vậy a=108.9+106=1078
số tự nhiên chia 5 dư 3 có tận cùn là 3 hoặc 8 mà số đó chia hết cho 2 nên số đó là 88
Gọi số cần tìm là abc. Ta có abc+1 chia hết cho 2,3,4,5,6.
2=2
3=3
4=2^2
5=5
6=2.3. BCNN(2,3,4,5,6)=2^2.3.5=60. =>abcEB(60)=0,60,...
Vì abc+1 lớn nhất nên abc+1=960 =>abc=959.
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
gọi cần tìm là n (100 <n<999) ta có
n-1 chia hết 2 (n-1)+2 chia hết 2 n+1(vì 2-1=1) chia hết 2
n-2 chia hết 3=> (n-2)+3 chia hết 3=> n+1(vì 3-2=1)chia hết 3
n-3 chia hết 4 (n-3)+4 chia hết 4 n+1 chia hết 4
n-4 chia hết 5 (n-4)+5 chia hét 5 n+1 chia hết 5
n-5 chia hết 6 (n-5)+6 chia hết 6 n+1 chia hết 6
=>n+1 thuộc BC(2,3,4,5,6)
2=2, 3=3, 4=22, 5=5,6=2.3 => BCNN(2,3,4,5,6)=22.3.5=60
B(2,3,4,5,6)=BC(60)={0,60,120,180,...,960,1020,...}
n=-1,59,119,...,959,1019,...
vì 100<n<999 nên n=959