△ABC vuông tại A, AH là đường cao,phân giác góc HAC cắt HC tại D. Chứng minh cotB+cotC=BC/AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH có BI là đường cao ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{AB}{AC}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{HB}=\dfrac{AC}{HA}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(đpcm)
a: \(\widehat{DAE}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{HAC}\right)=\dfrac{1}{2}\cdot90^0=45^0\)
b: Xét ΔAEH và ΔAEF có
AE chung
\(\widehat{HAE}=\widehat{FAE}\)
AH=AF
Do đó: ΔAEH=ΔAEF
c: Ta có: ΔAEH=ΔAEF
nên \(\widehat{AHE}=\widehat{AFE}=90^0\)
=>EF⊥AC
mà AC⊥AB
nên EF//AB
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
Tam giác ABC vuông tại A => góc ACD + DBA = 90o
Tam giác ABH vuông tại H => góc BAH + DBA = 90o
=> góc ACD = BAH
Xét tam giác ADC có: góc ADB = DAC + ACD (tính chất góc ngoài của tam giác)
=> góc ADB = DAC + BAH
mặt khác, Góc BAD = DAH + BAH
Vì tam giác ABD cân tại B (AB = AD) => góc ADB = BAD
=> DAC = DAH => AD là phân giác của góc HAC
Xét ΔABC vuông tại A có
\(cotB=\dfrac{BA}{AC};cotC=\dfrac{AC}{AB}\)
\(cotB+cotC=\dfrac{BA}{AC}+\dfrac{AC}{AB}\)
\(=\dfrac{AB^2+AC^2}{AB\cdot AC}=\dfrac{BC^2}{AB\cdot AC}\)
\(=\dfrac{BC}{AB\cdot AC}\cdot BC=\dfrac{BC}{AH}\)