1 + 2^2 + 2^4 + ... +2^30 = ??
Các bạn trả lời nhanh giúp mình nhé.Mình đang vội!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y-2/7=4/5x15/24
y-2/7=4/5x5/8
y-2/7=1/2
y=1/2+2/7
y=7/14+4/14
y=11/14
Số nhỏ nhất có ba chữ số là 100. Số lớn nhất có một chữ số là 9. 100 x 9 = 900
Câu 5:
a: Hệ số tỉ lệ k của y đối với x là:
\(k=\dfrac{y}{x}=\dfrac{3}{-6}=-\dfrac{1}{2}\)
b: \(\dfrac{y}{x}=-\dfrac{1}{2}\)
=>\(y=-\dfrac{1}{2}x\)
=>\(x=\dfrac{\left(-2\right)\cdot y}{1}=-2y\)
c: Khi x=1/2 thì \(y=-\dfrac{1}{2}\cdot\dfrac{1}{2}=-\dfrac{1}{4}\)
d: Khi y=-8 thì \(x=\left(-2\right)\cdot\left(-8\right)=16\)
Câu 3:
Gọi số học sinh của hai lớp 7A và 7B lần lượt là a(bạn) và b(bạn)
(Điều kiện: \(a,b\in Z^+\))
Lớp 7A có ít hơn lớp 7B là 5 bạn nên b-a=5
Số học sinh của lớp 7A và lớp 7B lần lượt tỉ lệ với 8 và 9 nên ta có
\(\dfrac{a}{8}=\dfrac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{9}=\dfrac{b-a}{9-8}=\dfrac{5}{1}=5\)
=>\(a=5\cdot8=40;b=5\cdot9=45\)
Vậy: Lớp 7A có 40 bạn; lớp 7B có 45 bạn
Câu 4:
Gọi khối lượng giấy vụn lớp 6a,6b,6c quyên góp được lần lượt là a(kg),b(kg),c(kg)
(Điều kiện: a>0;b>0;c>0)
Vì khối lượng giấy vụn mà ba lớp 6a,6b,6c quyên góp được lần lượt tỉ lệ với 9;7;8 nên \(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}\)
Tổng khối lượng giấy vụn ba lớp quyên góp được là 120kg nên a+b+c=120
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{9+7+8}=\dfrac{120}{24}=5\)
=>\(a=5\cdot9=45;b=5\cdot7=35;c=8\cdot5=40\)
Vậy: Lớp 6a quyên góp được 45kg; lớp 6b quyên góp được 35kg; lớp 6c quyên góp được 40kg
Câu 2:
a: 10km=10000m
10000m dây đồng có cân nặng là:
\(47:5\cdot10000=94000\left(g\right)\)
b: 300g=0,3kg=0,003 tạ
0,003 tạ nặng:
\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)
Câu 1:
a:
\(\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|-5>=-5\forall x\)
=>\(A>=-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
=>2x=1
=>x=1/2
Vậy: \(A_{Min}=-5\) khi x=1/2
b: \(2x^2>=0\forall x\)
=>\(2x^2+1>=1\forall x\)
=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)
=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)
=>B>=-2\(\forall\)x
Dấu '=' xảy ra khi x=0
c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)
\(\left(y+2\right)^2>=0\forall y\)
Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)
=>x=1/2 và y=-2
\(A=2+2^2+2^3+2^4+........+2^{600}\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5+..........+2^{601}\)
\(\Rightarrow2A-A=2^{601}-2\)
\(\Rightarrow A=2^{601}-2\)
\(A=2^2+2^3+2^4+...+2^{600}\)
\(\Rightarrow2A=2^3+2^4+2^5+...+2^{601}\)
\(2A-A=\left(2^3+2^4+2^5+...+2^{601}\right)-\left(2^2+2^3+...+2^{600}\right)\)
\(\Leftrightarrow2A-A=A=2^{601}-2^2\)
Đặt A= \(1+2^2+2^4+...+\)\(2^{30}\)
\(\Rightarrow2^2.A=2^2.\left(1+2^2+2^4+...+2^{30}\right)\)
\(\Rightarrow4A=2^2+2^4+2^6+...+2^{30}+2^{32}\)
\(\Rightarrow4A-A=\left(2^2+2^4+2^6+...+2^{30}+2^{32}\right)-\left(1+2^2+2^4+...+2^{30}\right)\)
\(\Rightarrow3A=2^{32}-1\)
\(\Rightarrow A=\frac{2^{32}-1}{3}\)