Có bao nhiêu số tự nhiên có sáu chữ số trong đó chữ số hàng trăm nghìn bằng chữ số đơn vị, chữ số hàng chục nghìn bằng chữ số hàng chục, chữ số hàng nghìn bằng chữ số hàng trăm, biết chữ số đơn vị kém chữ số hàng chục 3 đơn vị. Chữ số hàng chục nhỏ hơn chữ số hàng trăm 3 đơn vị, chữ số hàng trăm nhỏ hơn hàng đơn vị 3 đơn vị chữ số?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì chữ số hàng đơn vị gấp ba lần chữ số hàng chục nên chữ số hàng chục là: 9 : 3 = 3
Vì chữ số hàng trăm hơn chữ số hàng chục 4 đơn vị nên chữ số hàng trăm là: 3 + 4 = 7
Vì chữ số hàng nghìn kém chữ số hàng trăm hai đơn vị nên chữ số hàng nghìn là: 7 – 2 = 5
Vì chữ số hàng nghìn hơn chữ số hàng chục nghìn 1 đơn vị nên chữ số hàng chục nghìn là 5 – 1 = 4
Vì chữ số hàng chục nghìn gấp đôi chữ số hàng trăm nghìn nên chữ số hàng trăm nghìn là 4 : 2 = 2
Vậy số có 6 chữ số cần tìm là 245 739
1001 phải là 2 số tự nhiên tiên tiếp
Nên \(\orbr{\begin{cases}n+1=1000\\n+1=1002\end{cases}\Rightarrow\orbr{\begin{cases}n=999\\x=1001\end{cases}}}\)
Thay n=999 ta có:
1+2+3+.....+999=\(\frac{\left(999+1\right)999}{2}=499500\)(loại)
Thay n=1001 ta có:
\(1+2+3+...+1001=\frac{\left(1001+1\right)1001}{2}=501501\)(chọn)
Vậy tổng cần tìm là: 501501
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356
tổng là từ 1 đến 1000 và đáp số là 500500 vấn đề là cách chình bày