Cho n là số tự nhiên chia cho 4 thì dư 3.
Vậy phân số \(\dfrac{n}{n+2}\)có tối giản hay ko ?
các bạn giúp mình với, làm trc thứ 2 nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
=> 2n+3 cà 4n+1 có ước chung là 1
1)Gọi d là ƯCLN của 21n+1 và 14n+3
Ta có:
21n+1 chia hết cho d
=>42n+2 chia hết cho d
14n+3 chia hết cho d
=>42n+9 chia hết cho d
=>42n+9-42n-2 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)={1;7}
=>21n+1/14n+3 là phân số tối giản
2)Gọi số cần tìm là a(a nhỏ nhất)
Theo bài ra ta có;
a-5 chia hết cho 29
Gọi thương lần lượt của phép chia lần 1 và lần 2 lần lượt là b và c.
Ta có a = b x 22 + 7
a = c x 36 + 4
Nhận thấy cả 2 tích bx22 và cx36 là 2 số chẵn suy ra 2 tích đều được kết quả là số chẵn.
Mà chẵn + chẵn = chẵn ; chẵn + lẻ = lẻ.
Suy ra bx22+7 kết quả là số lẻ
cx36+4 kết quả là số chẵn
Vì a là cả chẵn cả lẻ nên phép chia thứ 2 là sai.
học tốt
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
giả sử phép chia thứ 2 là đúng.
Ta có:
a = 22x + 7 (1) (x,y thuộc N )
a= 36y + 4 (2)
Từ (1) và (2) => 22x+7 = 36y +4 <=> y = ( 22x +3 )/36 (3)
,<=> y = ( 2.11x+2+1)/(2.)18)
Ta thấy (2.11x + 2 +1) là một số lẻ => ko chia hết cho 2 =>ko chia hết cho (2.18)
vậy giả thuyết ban đầu sai.
=> phép chia thứ 2 sai .
giả sử a chia 22 dư 7
\(\Rightarrow\) a là số lẻ
\(\Rightarrow\) a chia 36 cũng sẽ có số dư lẻ
mà 4 là số chẵn
Vậy phép chia thứ hai sai
Gọi \(ƯCLN\left(n,n+2\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+2\right)-n⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1,2\right\}\)
Với \(d=2\) thì do d là ước của n nên 2 là ước của n. Thế nhưng n là số lẻ (do n chia 4 dư 3) nên ta thấy vô lí.
Vậy \(d=1\) hay \(ƯCLN\left(n,n+2\right)=1\). Do đó phân số \(\dfrac{n}{n+2}\) là phân số tối giản khi n chia 4 dư 3.