Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{51}{153}-\frac{3}{153}\right)\)
\(=\frac{1}{2}.\frac{48}{153}\)
\(=\frac{24}{153}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{17}{51}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
Đặt A=1-2-3+4-5-6+7-8-9+...+49-50-51
A=(1-2-3)+(4-5-6)+(7-8-9)+...+(49-50-51)
A=(-4)+(-7)+(-10)+...+(-52)
SSH trong dãy là: (52-4):3+1=17
Tổng là: [(-52)+(-4)].17:2=-476
Chúc bạn học tốt
f: \(-20:2^2+\left(-5\right)^9:5^8\)
\(=-20:4-5^9:5^8\)
=-5-5
=-10
g: \(-100:5^2+\left(-7\right)\cdot\left(-3\right)^2\)
\(=-\dfrac{100}{25}-7\cdot9\)
=-4-63
=-67
h: \(-84:4+3^9:\left(-3\right)^7+\left(-5\right)^0\)
\(=-21-3^9:3^7+1\)
\(=-21-3^2+1\)
=-20-9
=-29
i: \(-29-\left[16+3\left(51-49\right)\right]\)
\(=-29-16-3\cdot2\)
=-45-6
=-51
j: \(-58\cdot75+58\cdot\left(-50\right)-58\left(-25\right)\)
\(=58\cdot\left(-75\right)+58\left(-50\right)+58\cdot25\)
\(=58\left(-75-50+25\right)\)
\(=-58\cdot100=-5800\)
\(B=\dfrac{4}{1\times3}+\dfrac{4}{3\times5}+\dfrac{4}{5\times7}+...+\dfrac{4}{47\times49}+\dfrac{4}{49\times51}\)
\(=2\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{47\times49}+\dfrac{2}{49\times51}\right)\)
\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=2\times\left(1-\dfrac{1}{51}\right)\)
\(=2\times\dfrac{50}{51}\)
\(=\dfrac{100}{51}\)