K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

Trong 9 quả bóng sẽ có 5 quả bóng được đánh số lẻ và 4 quả bóng được đánh số chẵn

TH1: 2 quả đều lẻ

=>Có \(C^2_5=10\left(cách\right)\)

TH2: 2 quả đều chẵn

=>Có \(C^2_4=6\left(cách\right)\)

Số cách lấy ra cùng lúc 2 quả bóng có tổng là số chẵn là:

10+6=16(cách)

4 tháng 4 2018

Trong trường hợp xấu nhất ta chọn phải tất cả các quả số 1, 2, ..., 9
và mỗi số từ 10 đến 100 mỗi số có 9 quả. Như vậy có tất cả 45+ 9×91 = 864
quả. Vậy phải lấy ít nhất 865 quả để đảm bảo có 10 quả cùng số.
Đáp số: 865.

27 tháng 5 2019

Số phần tử của không gian mẫu là 

Các trường hợp thuận lợi cho biến cố là

• 2 xanh,  1 vàng, 1  đỏ (Giải thích: Khi bốc mình sẽ bốc bi ít hơn trước tiên. Bốc 2 viên bi xanh từ 4 viên bi xanh nên có  cách, tiếp theo bốc 1 viên bi vàng từ 3 viên bi vàng (do loại 2 viên cùng số với bi xanh đã bốc) nên có  cách, cuối cùng bốc 1 viên bi đỏ từ 3 viên bi đỏ (do loại 2 viên cùng số với bi xanh và 1 viên cùng số với bi vàng) nên có  cách)

Suy ra số phần tử của biến cố là 

Vậy xác suất cần tính 

Chọn C.

30 tháng 6 2017

Chọn đáp án C

Các trường hợp thuận lợi cho biến cố là

§ (Giải thích: Khi bốc mình sẽ bốc bi ít hơn trước tiên. Bốc 2 viên bi xanh từ 4 viên bi xanh nên có  cách, tiếp theo bốc 1 viên bi vàng từ 3 viên bi vàng (do loại 2 viên cùng số với bi xanh đã bốc) nên có C 3 1  cách, cuối cùng bốc 1 viên bi đỏ từ 3 viên bi đỏ (do loại 2 viên cùng số với bi xanh và 1 viên cùng số với bi vàng) nên có  C 3 1  cách).

1 tháng 1 2022

a) 10 + 9 + 1 = 20 (quả)

b) 3 + 1 + 1 = 5 (quả)

11 tháng 1 2023

Muốn lấy số bóng ít nhất mà chắc chắn được 4 quả cùng màu thì ít nhất phải lấy hết số bóng có 3 màu mà có số lượng ít nhất và lấy thêm 1 quả nữa.

 

Vậy số bóng ít nhất Moris cần lấy ra l

 

2+3+9+1 = 15 (qu

 

ả)à:quả)

19 tháng 8 2018




Chọn đáp án C

28 tháng 9 2018

Đáp án C

 

Phương pháp:

Chia thành các trường hợp:

+ Trong hai quả bóng bốc được có ít nhất một quả có số chia hết cho 10.

+ Trong hai quả bốc được có một quả có chữ số hàng đơn vị bằng 5 và một quả có chữ số hàng đơn vị là 2,4,6,8.

Đếm số khả năng có lợi cho biến cố và tính xác suất.

Cách giải:

Xét phép thử T: “Bốc ngẫu nhiên 2 trong 50 quả bóng”.

Số phần tử không gian mẫu n Ω = C 50 2

 Gọi A là biến cố: “Tích hai số ghi trên hai bóng chia hết cho 10:.

+) TH1: Trong hai quả bốc được có ít nhất 1 quả có số chia hết cho 10

Số cách chọn để trong hai quả không có quả nào có số chia hết cho 10 là  C 45 2

→ Số cách chọn để trong hai quả có ít nhất 1 quả có số chia hết cho 10 là

+) TH2: Trong hai quả bốc được có 1 quả có chữ số hàng đơn vị là 5 và 1 quả có chữ số hàng đơn vị là 2,4,6,8.

Số cách chọn để có được hai số trên (không phân biệt thứ tự) là  

 

29 tháng 3 2018


1 tháng 9 2019

Chọn C

.

Gọi  là biến cố “bốc được  quả bóng có tích của  số ghi trên  quả bóng là một số chia hết cho 10 ”. Xét các tập hợp sau:

Tập B 2  có 20 phần tử.

Có ba trường hợp xảy ra khi tích của hai số trên hai quả bóng chia hết cho 10.

Trường hợp 1: 1 quả bóng có số ghi thuộc tập B 1 , quả bóng còn lại có số ghi thuộc tập B\ B 1

Khi đó số cách bốc 2 quả bóng là: (cách).

 

Trường hợp 2: 2 quả bóng có số ghi đều thuộc tập  B 1 .

Khi đó số cách bốc 2 quả bóng là: C 5 2 (cách).

Trường hợp 3: 1 quả bóng có số ghi thuộc tập  B 2 , quả bóng còn lại có số ghi thuộc tập C 2 .

Khi đó số cách bốc 2 quả bóng là: 

Suy ra: 

Vậy: 

=> 0,25 < P < 0,3