Tìm gi á trị lớn nhất của biểu thức nhau
(x+1) \(\left(x+2\right)^2\)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)
\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)
\(\Rightarrow\dfrac{1}{16}\le M\le61\)
\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)
câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)
\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)
\(\Rightarrow3\le M\le7\)
\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)
\(\Rightarrow M_{min}=-6\) khi \(x=2\)
4) điều kiện xác định \(-6\le x\le10\)
ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)
áp dụng bunhiacopxki dạng căn ta có :
\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)
\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)
\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)
\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)
\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(A=\dfrac{3+2\left|x+2\right|}{1+\left|x+2\right|}\)
\(=\dfrac{2+2\left|x+2\right|+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)}{1+\left|x+2\right|}+\dfrac{1}{1+\left|x+2\right|}\)
\(=2+\dfrac{1}{1+\left|x+2\right|}\)
Ta có \(\left|x+2\right|\ge0\)
\(\Leftrightarrow1+\left|x+2\right|\ge1\)
\(\Leftrightarrow\dfrac{1+\left|x+2\right|}{1+\left|x+2\right|}\ge\dfrac{1}{1+\left|x+2\right|}\)
\(\Leftrightarrow\dfrac{1}{1+\left|x+2\right|}\le1\)
\(\Leftrightarrow2+\dfrac{1}{1+\left|x+2\right|}\le1+2=3\)
\(\Rightarrow A\le3\)
Dấu \("="\) xảy ra khi \(x+2=0\) \(\Leftrightarrow x=-2\)
Vậy giá trị lớn nhất của biểu thức \(A\) là \(3\)
a) vi (x+2)2+4\(\ge4\) vo moi x
=>\(\dfrac{3}{\left(x+2\right)^2+4}\le\dfrac{3}{4}\)
=> A\(\le\dfrac{3}{4}\)
dau = xay ra khi x=-2
vay.......
b) B=(x+1)2+(y+3)2+1
ta co (x+1)2\(\ge0\) voi moi x
\(\left(y+3\right)^2\ge0\) voi moi y
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\) voi moi x,y
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+1\ge1\) voi moi x,y
dau = xay ra khi x=-1;y=-3
vay..........
Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:
$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$
Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$
$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$
Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$
a, (x-3)2\(\ge\)0 (\(\forall\)x)
\(\Rightarrow\)(x-3)2+5 \(\ge\) 5 (\(\forall\)x)
Dấu"=" xảy ra:\(\Leftrightarrow\)(x-3)2=0\(\Leftrightarrow\)x-3=0\(\Leftrightarrow\)x=3.
Vậy giá trị nhỏ nhất của (x-3)2+5 là 5 khi và chỉ khi x=3
b, Ta có: ( x - 1 )2\(\ge\)0 (\(\forall\)x)
\(\Rightarrow\)( x - 1)2+2\(\ge\)2 (\(\forall\)x)
\(\Rightarrow\)\(\dfrac{1}{\left(x-1\right)^2+2}\)\(\le\)\(\dfrac{1}{2}\) (\(\forall\)x)
\(\Rightarrow\)3.\(\dfrac{1}{\left(x-1\right)^2+2}\)\(\le\)3.\(\dfrac{1}{2}\)=\(\dfrac{3}{2}\).
Dấu "=" xảy ra:\(\Leftrightarrow\)(x-1)2=0\(\Leftrightarrow\)x-1=0
\(\Leftrightarrow\)x=1.
Vậy giá trị nhỏ nhất của \(\dfrac{3}{\left(x-1\right)^2+2}\)là:
\(\dfrac{3}{2}\) khi và chỉ khi x=1
Lời giải:
Ta có:
$(x+1)(x+2)^2(x+3)=[(x+1)(x+3)](x+2)^2=(x^2+4x+3)(x^2+4x+4)$
$=a(a+1)$ (đặt $x^2+4x+3=a$)
$=a^2+a=(a+\frac{1}{2})^2-\frac{1}{4}$
$=(x^2+4x+\frac{7}{2})^2-\frac{1}{4}\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $x^2+4x+\frac{7}{2}=0$
$\Leftrightarrow x=\frac{-4\pm \sqrt{2}}{2}$