Cho C=75°, A=45°, B=60° tính các cạnh AB, AC, BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (Tổng 3 góc trong \(\Delta\)).
Mà \(\widehat{A}=60^o;\widehat{B}=45^o\) (đề bài).
\(\Rightarrow\widehat{C}=75^o.\)
Áp dụng định lý sin:
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}.\)
\(Thay:\) \(\dfrac{BC}{sin60^o}=\dfrac{2}{sin45^o}=\dfrac{AB}{sin75^o}.\) \(\Rightarrow\dfrac{BC}{sin60^o}=\dfrac{AB}{sin75^o}=2\sqrt{2}.\)
\(\Rightarrow\left\{{}\begin{matrix}BC=\sqrt{6}.\\AB=1+\sqrt{3}.\end{matrix}\right.\)
a) Ta có:
\(\widehat{A}=180^o-60^o-45^o=75^o\)
Áp dụng định lý sin ta có:
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)
\(\Rightarrow AC=\dfrac{BC\cdot sinB}{sinA}\)
\(\Rightarrow AC=\dfrac{a\cdot sin60^o}{sin75^o}=a\cdot\dfrac{3\sqrt{2}-\sqrt{6}}{2}\)
\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
\(\Rightarrow AB=\dfrac{BC\cdot sinC}{sinA}\)
\(\Rightarrow AB=\dfrac{a\cdot sin45^o}{sin75^o}=a\cdot\left(\sqrt{3}-1\right)\)
b) \(cos75^o\)
\(=cos\left(30^o+45^o\right)\)
\(=cos30^o\cdot cos45^o-sin30^o\cdot sin45^o\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left(\dfrac{\sqrt{3}-1}{2}\right)\)
\(=\dfrac{\sqrt{6}-\sqrt{2}}{4}\left(dpcm\right)\)
Bạn xem lại đề không hiểu các dâu hình chữ nhật sau ACB là gì?
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)
* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)
* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)