K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

1x=3 ; y=5

20 tháng 10 2023

cau 2 tui ko bik nàm

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.

=> y = 0

\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.

Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3

=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)

=> x\( \in \) {1; 4; 7}

Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.

b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5

=> y = 5

\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9

Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9

=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)

=> x = 3.

Vậy  \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.

31 tháng 3 2021

a) 135, * = 5

b) 672, * = 2

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

10 tháng 8 2021

a. 2

b. 1

c. 0

d. 0

e.4

1. 862

2. 861

3.866

4.860

5.864

HQ
Hà Quang Minh
Giáo viên
2 tháng 10 2023

a) Số \(\overline {345 * } \) chia hết cho 2 thì nó phải có tận cùng là chữ số chẵn.

Vậy có thể thay * bằng các chữ số: 0; 2; 4; 6; 8

b) Số \(\overline {345 * } \) chia hết cho 3 thì tổng các chữ số của nó cũng chia hết cho 3.

Do đó 3+4+5+* chia hết cho 3 nên 12 + * chia hết cho 3.

Mà 12 chia hết cho 3 nên * cũng chia hết cho 3

Vậy có thể thay * bằng các chữ số: 0; 3; 6; 9

c) Số \(\overline {345 * } \) chia hết cho 5 thì nó phải có tận cùng là 0 hoặc 5

Vậy có thể thay * bằng các chữ số: 0 ; 5

d) Số \(\overline {345 * } \) chia hết cho 9 thì tổng các chữ số của nó cũng chia hết cho 9

Do đó 3+4+5+* chia hết cho 9 nên 12 + * chia hết cho 9

Vậy có thể thay * bằng chữ số 6.

N
19 tháng 5 2017

Bài làm :

a) Để 3*5 chia hết cho 3 . Ta có :

3*5 = 3 + ( * ) + 5 ( * N và * <10 )

3*5 = ( 3 + 5 ) + ( * )

3*5 = 8 + (*) chia hết cho 3

Vậy để 3*5 (8 + *)chia hết cho 3

Nên * {1;4;7}

b) Để 7*2 chia hết cho 9 . Ta có :

7*2 = 7 + (*) + 2 ( * N và * < 10 )

7*2 = ( 7 + 2 ) + (*)

7*2 = 9 + (*) chia

Vậy để 7*2 (9 + *) chia hết cho 9

Nên * {0;9}

c) Để *63* chia hết cho cả 2,3,5,9 .

+ Số chia hết cho 2 ; 5 thì chữ số tận cùng của nó phải là số 0

Ta có *630 chia hết cho 2,3,5,9

+ Để *630 chia hết cho 3,9

Ta có :

*630 = (*) + 6 + 3 + 0 ( * N và * < 10 )

*630 = (*) + ( 6 + 3 + 0 )

*630 = (*) + 9 chia hết cho 3 ; 9

Vậy để *630 (* + 9) chia hết cho 3 ; 9

Do * \(\ne0\) nên * {9}

 

10 tháng 7 2017

Để 3*5 chia hết cho 3 thì 3+5+* chia hết cho 3

Ta có 3 + 5 + *=8 + *

* thuộc {1;4;7}

Vậy * thuộc tập hợp {1;4;7}

Để 7*2 chia hết cho 9 thì

7 + 2 + *chia hết cho 9

Ta có 7 + 2 + * = 9 + *

* thuộc {0;9}

Vậy * thuộc {0;9}

Để *63* chia hết cho cả 2;3;5;9 thì

Để *63* chia hết cho cả 2 và 5 thì tận cùng của *63* là 0 tức * thứ hai bằng 0

Thay vào ta có *630

Chia hết cho 9 cx là chia hết cho 3 nên

*630 chia hết cho 9 thì *630 = 6 + 3 + 0 + * = 9 + *

* thứ hai thuộc {0;9} mak * thứ nhất là chữ số hàng nghìn đứng đầu nên * thứ nhất chỉ có thể là 9

Vậy * thứ nhất bằng 9 và * thứ 2 bằng 0