cho tam giác ABC có ba góc nhọn,vẽ hai đường cao BE và CF cắt nhau tại H
a) Chứng minh AH vuông góc BC.
b)Chứng minh bốn điểm B,C,E,F cùng thuộc đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc một đường tròn
Tâm I là trung điểm của BC
a) Ta có: \(\widehat{CFB}=90^0\)(CF⊥AB)
nên F nằm trên đường tròn đường kính CB(Định lí)(1)
Ta có: \(\widehat{CEB}=90^0\)(BE⊥AC)
nên E nằm trên đường tròn đường kính CB(Định lí)(2)
Từ (1) và (2) suy ra F,E cùng nằm trên đường tròn đường kính CB
hay B,E,F,C cùng thuộc một đường tròn(đpcm)
Tâm I của đường tròn ngoại tiếp tứ giác BEFC là trung điểm của CB
b) Ta có: BEFC là tứ giác nội tiếp(cmt)
nên \(\widehat{EFC}=\widehat{EBC}\)(Cùng nhìn cạnh EC)
\(\Leftrightarrow\widehat{KFC}=\widehat{KBE}\)
Xét ΔKFC và ΔKBE có
\(\widehat{FKB}\) chung
\(\widehat{KFC}=\widehat{KBE}\)(cmt)
Do đó: ΔKFC∼ΔKBE(g-g)
⇒\(\dfrac{KF}{KB}=\dfrac{KC}{KE}\)(Các cặp cạnh tương ứng tỉ lệ)
⇒\(KE\cdot KF=KB\cdot KC\)(đpcm)
a: Xét tứ giác BFEC có
\(\widehat{BEC}=\widehat{BFC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc 1 đường tròn
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>B,F,E,C cùng thuộc một đường tròn
b: Xét (O) có
ΔABA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔABA' vuông tại B
=>BA'\(\perp\)AB
mà CH\(\perp\)AB
nên BA'//CH
Xét (O) có
ΔACA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔACA' vuông tại C
=>AC vuông góc CA'
mà BH vuông góc AC
nên BH//A'C
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
1) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,C,E,F cùng thuộc một đường tròn(đpcm)
a) Ta có: \(\widehat{BFC}=90^0\)(CF\(\perp\)AB)
nên F nằm trên đường tròn đường kính BC(Định lí)(1)
Ta có: \(\widehat{BEC}=90^0\)(BE\(\perp\)AC)
nên E nằm trên đường tròn đường kính BC(Định lí)(2)
Từ (1) và (2) suy ra F,E cùng nằm trên đường tròn đường kính BC
hay B,F,E,C cùng thuộc một đường tròn(đpcm)
a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘, ˆBFC=90∘
Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.
b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB
Suy ra tứ giác BFMS là tứ giác nội tiếp.
Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.
c)
+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)
Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)
Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).
+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.
Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.
Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)
Ta có:
ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.
ΔAME∽ΔACSnên AM.AS = AE.AC.
Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.
Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.
Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)
Từ (3) và (4) suy ra HS // PI, hay KH // PI.
cái bài mình bấm sai đấy không phải bài 7 đâu