K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

\(-18< 24-3x< 39\)

\(\Rightarrow24-39< 3x< 24-\left(-18\right)\)

\(\Leftrightarrow-15< 3x< 42\)

\(\Leftrightarrow-5< x< 14\)

\(\Rightarrow\) có 14 giá trị nguyên không âm

16 tháng 10 2023

-18 < 24 - 3x

3x < 24 + 18

3x < 42

x < 14 (1)

24 - 3x < 39

-3x < 39 - 24

-3x < 15

x > -5 (2)

Từ (1) và (2) ⇒ -5 < x < 14

⇒ Số nghiệm nguyên không âm là:

13 - 0 + 1 = 14 (nghiệm)

10 tháng 12 2019

Đáp án là B

26 tháng 2 2018

NV
17 tháng 1 2022

Xét hàm \(f\left(x\right)=\dfrac{1}{9^x-3}+\dfrac{1}{3^x-9}\) có \(f'\left(x\right)=-\dfrac{9^x.ln9}{\left(9^x-3\right)^2}-\dfrac{3^x.ln3}{\left(3^x-9\right)^2}< 0\)

\(\Rightarrow\) Hàm luôn nghịch biến trên miền xác định

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\dfrac{1}{3}-\dfrac{1}{9}=-\dfrac{4}{9}\) ; \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=0\) ; \(f\left(4\right)>0\)

\(\lim\limits_{x\rightarrow0,5^+}f\left(x\right)=+\infty;\lim\limits_{x\rightarrow0,5^-}f\left(x\right)=-\infty;\lim\limits_{x\rightarrow2^-}f\left(x\right)=-\infty;\lim\limits_{x\rightarrow2^+}f\left(x\right)=+\infty\)

BBT:

undefined

Xét hàm \(g\left(x\right)=x+\left|x-4\right|+a=\left\{{}\begin{matrix}a+4\text{ nếu }x\le4\\2x+a-4\text{ nếu }x\ge4\end{matrix}\right.\)

Từ BBT ta thấy: 

- Nếu \(a\ge-3\Rightarrow g\left(x\right)\) cắt f(x) tại 2 điểm phân biệt thỏa mãn \(x< 4\)

- Nếu \(a=-4\Rightarrow g\left(x\right)\) cắt f(x) tại 2 điểm pb thỏa mãn \(x_1< 4< x_2\)

- Nếu \(a\le-5\) \(\Rightarrow g\left(x\right)\) cắt f(x) tại 3 điểm pb thỏa mãn \(x_1< x_2< 4< x_3\) (loại)

Vậy \(a=\left\{-1;-2;-3;-4\right\}\)

21 tháng 7 2019

Chọn A.

28 tháng 1 2019

Đặt 

Suy ra 

Ta có 

Ta có bảng biến thiên

Từ bảng biến thiên ta suy ra 

Khi đó bất phương trình trở thành: 

Xét hàm số  với 

Ta có 

Suy ra hàm số f(t) nghịch biến trên 

Chọn C.

16 tháng 5 2018

Chọn đáp án A

Vậy số giá trị nguyên của m để phương trình có nghiệm là 10.

27 tháng 12 2017

Chọn D.

Phương trình 

YCBT trở thành(1) có nghiệm thực khi và chỉ khi (m + 4) (3 - m) > 0

Suy ra: -4 < m < 3

Mà 

12 tháng 2 2017