Tìm 2 số tự nhiên a,b (a lớn hơn b)
ƯCLN(a,b) = 45 và a = 270
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $ƯCLN(a,b)=12, a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$.
Ta có:
$a+b=12x+12y=120$
$\Rightarrow 12(x+y)=120$
$\Rightarrow x+y=10$
Mà $x>y, (x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108, 12), (84,36)$
Tham khảo :
Câu hỏi của thang Tran - Toán lớp 6 - Học toán với OnlineMath
b) Ta có: ƯCLN(a,b) = 45
=> a = 45k; b = 45n
=> a.b = 45k.45n = 2025kn
=> kn = 24300 : 2025 = 12
Vậy k;n xảy ra hai trường hợp
TH1: k = 1; n = 12 (hoặc ngược lại)
TH2: k = 2; n = 6 (hoặc ngược lại)
Lời giải:
Vì $ƯCLN(a,b)=45, a>b$ nên đặt $a=45x, b=45y$ với $x,y$ là stn, $x>y$, $(x,y)=1$
Theo bài ra ta có:
$a+b=45x+45y=270$
$\Rightarrow 45(x+y)=270$
$\Rightarrow x+y=6$
Vì $x>y$ và $(x,y)=1$ nên $(x,y)=(5,1), (3,2)$
$\Rightarrow (a,b)=(225, 45), (135, 90)$