K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

2n + 2 = 2( n +1) chia hết cho 2   (1)

4n + 8 = 2 ( 2n + 4) chia hết cho 2 (2)

Từ (1) và (2) = > 2 số ko phải là nguyên tố cùng nhau

17 tháng 1 2017

121212121212

26 tháng 2 2016

Gọi d là ƯC ( 7n + 10 ; 5n + 7 )

=> 7n + 10 ⋮ d => 5.( 7n + 10 ) ⋮ d => 35n + 50 ⋮ d

=> 5n + 7 ⋮ d => 7.( 5n + 7 ) ⋮ d => 35n + 49 ⋮ d

=> [ ( 35n + 50 ) - ( 35n + 49 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 7n + 10 ; 5n + 7 ) = 1 nên 7n + 10 và 5n + 7 là nguyên tố cùng nhau

Câu b làm tương tự

2 tháng 3 2016

mút tao đi mà ựa ựa

7 tháng 1 2016

Gọi ƯCLN(2n+3,4n+8)là d

Ta có :

      2n+3 chia hết cho d

suy ra 4n+6 chia hết cho d

suy ra : (4n+8)-(4n+6)chia hết cho d 

suy ra : 2 chia hết cho d

suy ra d thuộc Ư(2)

Ư(2)=1,2

Vì 2n+3 chia hết cho d,mà 3 lẻ,suy ra d lẻ

suy ra d=1

vậy ƯCLN(2n+3,4n+8)=d=1

vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

tick nhé

27 tháng 11 2015

câu a : xem lại đề 

b:

gọi UCLN(2n+3;4n+8)=d

ta có :

2n+3 chia hết cho d => 2(2n+3) chia hết cho d =>4n+6 chia hết cho d

4n+8 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

=>2 chia hết cho d

=>d thuộc U(2)={1;2}

nếu d=2

htif 2n+3 ko chia hết cho 2

=>d=1

=>UCLN(..)=1

=>dpcm

 

5 tháng 12 2015

b)Gọi UCLN(2n+3;4n+8) là d

Ta có:2n+3 chia hết cho d

         4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

    1(4n+8)chia hết cho d

=>4n+6 chia hết cho d

    4n+8 chia hết cho d

4n+8 -(4n+6) chia hết cho d

   2 chia hết cho d

=>d thuộc {1;2} mà 2n+3 không chia hết cho 2

=>d=1

Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau.

Tick câu thứ 2 nha!Nếu không hiểu bạn nhắn tin hỏi mình nhé!

    

5 tháng 12 2015

câu hỏi tương tự nha. Tick đi

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

9 tháng 9 2017

Chị ơi emko hiểu chỗ 2.(2n+3) chia hết cho d => 4n+6 chia hết cho d 

Và 6ởđâu ra vạy chị

27 tháng 1 2018

Gọi d = UCLN(2n+3,4n+8)

Suy ra 2n+3 ⋮ d và 4n+8d

Ta có 2n+3d => 2.(2n+3)d => 4n+6d

Vì 4n+8d và 4n+6d nên (4n+8) – (4n+6)d => 2d => d ∈ {1;2}

Vì 2n+3 là số lẻ nên d = 2 là không thỏa mãn. Vậy d = 1

Vậy với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau

13 tháng 12 2021

Tham Khảo:

13 tháng 12 2021

Giả sử: \(UCLN\left(2n+3;4n+8\right)=d\)

=> \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

=> \(2⋮d\) => \(\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Có 2n+3 là số lẻ => \(2n+3⋮̸2\)

=> d = 1

=> đpcm

13 tháng 12 2018

\(Gọi:d=UCLN\left(2n+3;4n+8\right).Taco\)

\(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì: 2n+3 là số lẻ nên d là số lẻ

=> d=1. Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

15 tháng 12 2018

cảm ơn bạn