K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó; ΔABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=R\sqrt{3}\)

b: Xét ΔDOB có

BA là đường trung tuyến

BA=DO/2

Do đó: ΔDOB vuông tại B

hay DB là tiếp tuyến của (O)

9 tháng 9 2017

bạn tự vẽ hình nha 

bạn dễ dàng chứng minh đc tam giác ACO là tam giác đều ( AM = MO ; CM vuong goc vs AO )

trong tam giác ECO có EA = AO = AC nên suy ra tam giac ECO vuong tai C

suy ra EC vuong goc vs OC . (dpcm )

b, sử dụng định lí pitago

10 tháng 12 2023

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AC=R\sqrt{3}\)

b: Ta có: ΔOAC cân tại O

mà OE là đường trung tuyến

nên OE là phân giác của góc AOC

=>OF là phân giác của góc AOC

Xét ΔOCF và ΔOAF có

OC=OA

\(\widehat{COF}=\widehat{AOF}\)

OF chung

Do đó: ΔOCF=ΔOAF

=>\(\widehat{OAF}=\widehat{OCF}=90^0\)

=>FA là tiếp tuyến của (O)

17 tháng 11 2023

a: BA là tiếp tuyến của (O) có B là tiếp điểm

=>OB\(\perp\)BA tại B

=>ΔOBA vuông tại B

ΔBOA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là tia phân giác của \(\widehat{BOC}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OCA}=\widehat{OBA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

16 tháng 10 2023

loading...  loading...  loading...