Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a) Chú ý: \(3012⋮3\Rightarrow3012^{95}⋮9\), nên hiển nhiên \(3012^{95}-1\) không chia hết cho 9
b/ \(5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}=20.5^{2n}.2^n+18.3^n.2^{2n}\)
chỉ cần CM \(5^{2n}.2^n-3^n.2^{2n}⋮19\)là xong
Có \(5^{2n}.2^n-3^n.2^{2n}=2^n\left(25^n-6^n\right)⋮\left(25-6\right)=19\)
( ax - by ) + ( ay - bx ) = ax - by + ay - bx
= ( ax + ay ) - ( by + bx )
= a . ( x + y ) - b . ( y + x )
= ( a -b ) . ( x + y )\(⋮\) x + y
Vậy ( ax - by ) + ( ay - bx )\(⋮\) x + y ( 1 )
Vì ax - by\(⋮\) x + y ( 2 )
từ ( 1 ) và ( 2 )\(\Rightarrow\)ay - bx chia hết cho x + y
Ta có: (ax - by) + (ay - bx)
= ax - by + ay - bx
= (ax + ay) - (bx + by)
= a.(x+y) - b.(x+y)
= (a-b).(x+y)
Vì \(x+y\ne0\)\(\Rightarrow\)\(\left(a-b\right).\left(x+y\right)⋮x+y\)
\(\Rightarrow\)\(\left(ax-by\right)+\left(ay-bx\right)⋮x+y\)
Vậy nếu ax-by chia hết cho x+y thì .......
Lời giải:
Bổ sung điều kiện $x$ là số nguyên khác 0.
Gọi $d=ƯCLN(x, x^2+1)$
$\Rightarrow x\vdots d; x^2+1\vdots d$
$\Rightarrow x^2+1-x^2\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$.
Vậy $(x, x^2+1)=1$. Mà $x^2+1>1$ với mọi $x$ là số nguyên khác $0$
$\Rightarrow x\not\vdots x^2+1$