Cho Pt x^2-4mx-2m =0 , có 2 nghiệm x1 và x2 , tìm Min của
P = m^2/(x1^2 + 4mx1 +6m ) +
(x1^2 +4mx2 +6m)/m^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2-2\left(2m+1\right)x+4m^2+4m=0\\ \Leftrightarrow\left(x^2-2mx\right)-2\left(m+1\right)x+4m\left(m+1\right)=0\\ \Leftrightarrow x\left(x-2m\right)-2\left(m+1\right)\left(x-2m\right)=0\\ \Leftrightarrow\left(x-2m\right)\left(x-2m-2\right)=0\Leftrightarrow x_1=2m;...or...x_2=2m\)
\(\Rightarrow\left(x_1-2m\right)\left(x_2-2m\right)=0\Leftrightarrow\left(x_1-2m\right)^2\left(x_2-2m\right)^2=0\Leftrightarrow\left(x_1^2-4mx_1+4m^2\right)\left(x_2^2-4mx_2+4m^2\right)=0\)
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
Δ=(4m+2)^2-4(3m^2+6m)
=16m^2+16m+4-12m^2-24m=4m^2-8m+4=(2m-2)^2
=>Phương trình luôn có 2 nghiệm
x1+2x2=16 và x1+x2=4m+2
=>x2=16-4m-2 và x1+2x2=16
=>x2=-4m+14 và x1=16+8m-28=8m-12
x1x2=3m^2+6m
=>-32m^2+48m+112m-168=3m^2+6m
=>m=12/5 hoặc m=2
a: \(\text{Δ}=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)
\(=25m^2-10m+1-24m^2+8m=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m-1=0\)
\(\Leftrightarrow13m^2-6m=0\)
=>m(13m-6)=0
=>m=0 hoặc m=6/13
Cho phương trình: x^2 - 2(m-1)x + m-3=0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt cùng dương
Δ=(-4m)^2-4(4m^2-m+2)
=16m^2-16m^2+4m-8=4m-8
Để phương trình có hai nghiệm phân biệt thì 4m-8>0
=>m>2
|x1-x2|=2
=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
=>\(\sqrt{\left(4m\right)^2-4\left(4m^2-m+2\right)}=2\)
=>\(\sqrt{16m^2-16m^2+4m-8}=2\)
=>\(\sqrt{4m-8}=2\)
=>4m-8=4
=>4m=12
=>m=3(nhận)