K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

\(a,A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)...+\left(2^{99}+2^{100}\right)\)

\(=6+2^2\cdot\left(2+2^2\right)+2^4\cdot\left(2+2^2\right)...+2^{98}\cdot\left(2+2^2\right)\)

\(=6+2^2\cdot6+2^4\cdot6...+2^{98}\cdot6\)

\(=6\cdot\left(1+2^2+2^4+...+2^{98}\right)\)

Vì \(6\cdot\left(1+2^2+2^4+...+2^{98}\right)⋮6\)

nên \(A⋮6\)

\(b,A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^3+2^5\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)

\(=10+2\cdot\left(2+2^3\right)+2^2\cdot\left(2+2^3\right)+...+2^{96}\cdot\left(2+2^3\right)+2^{97}\cdot\left(2+2^3\right)\)

\(=10+2\cdot10+2^2\cdot10+...+2^{96}\cdot10+2^{97}\cdot10\)

\(=10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)\)

Vì \(10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)⋮10\)

nên \(A⋮10\)

#\(Toru\)

14 tháng 10 2023

mình không biết làm

NM
6 tháng 10 2021

câu b,c có nhầm không bạn nhỉ 

undefined

20 tháng 12 2023

A = 2+ 2+ 22 + ... + 2100

A = (2+ 21) + (2+ 23) + ...+ ( 299 + 2100)

A = (20 + 21) + 2. (2+ 21) + ... + 299 . ( 20 + 21)

A = (2+ 21) . (20 + 22 + ... + 299)

A = 3 . (2+ 22 + ... + 299)

Vì 3 chia hết cho 3 nên 3 . (20 + 2+ ... + 299) chia hết cho 3.

=> A chia hết cho 3.

28 tháng 10 2019

Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100

A = (2 + 22) + (23 + 24) + ... + (299 + 2100)

A = 6 + 22(2 + 22) + .... + 298(2 + 22)

A = 6 + 22.6 + ... + 298.6

A = 6.(1 + 22 + ... + 298\(⋮\)6

29 tháng 10 2020

cho 31 

30 tháng 9 2017

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

`#3107.101107`

a,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3+2^5\right)+\left(2^5+2^7+2^9\right)+...+\left(2^{19}+2^{21}+2^{23}\right)\)

\(=2\left(1+2^2+2^4\right)+2^5\cdot\left(1+2^2+2^4\right)+...+2^{19}\cdot\left(1+2^2+2^4\right)\)

\(=\left(1+2^2+2^4\right)\cdot\left(2+2^5+...+2^{19}\right)\)

\(=21\cdot\left(2+2^5+...+2^{19}\right)\)

Vì \(21\text{ }⋮\text{ }21\)

\(\Rightarrow21\left(2+2^5+...+2^{19}\right)\text{ }⋮\text{ }21\)

Vậy, \(C\text{ }⋮\text{ }21\)

b,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{21}+2^{23}\right)\)

\(=\left(2+2^3\right)+2^4\cdot\left(2+2^3\right)+...+2^{20}\cdot\left(2+2^3\right)\)

\(=\left(2+2^3\right)\cdot\left(1+2^4+...+2^{20}\right)\)

\(=10\cdot\left(1+2^4+...+2^{20}\right)\)

Vì \(10\text{ }⋮\text{ }10\)

\(\Rightarrow10\cdot\left(1+2^4+...+2^{20}\right)\text{ }⋮\text{ }10\)

Vậy, \(C\text{ }⋮\text{ }10.\)

13 tháng 10 2023

a) c = 2 + 2³ + 2⁵ + ... + 2¹⁹ + 2²¹ + 2²³

= (2 + 2³ + 2⁵) + (2⁷ + 2⁹ + 2¹¹) + ... + (2¹⁹ + 2²¹ + 2²³)

= 2.(1 + 2² + 2⁴) + 2⁷.(1 + 2² + 2⁴) + ... + 2¹⁹.(1 + 2² + 2⁴)

= 2.21 + 2⁷.21 + ... + 2¹⁹.21

= 21.(2 + 2⁷ + ... + 2¹⁹) ⋮ 21

Vậy c ⋮ 21

b) c = 2 + 2³ + 2⁵ + 2⁷ + ... + 2²¹ + 2²³

= (2 + 2³) + (2⁵ + 2⁷) + ... + (2²¹ + 2²³)

= 10 + 2⁴.(2 + 2³) + ... + 2²⁰.(2 + 2³)

= 10 + 2⁴.10 + ... + 2²⁰.10

= 10.(1 + 2⁴ + ... + 2²⁰) ⋮ 10

Vậy c ⋮ 10

DD
14 tháng 12 2021

\(a=2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{99}\right)⋮3\).

12 tháng 10 2023

thanks , em cũng đang cần !

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)