Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD.
Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.
a/ Chứng minh MN// AD.
b/ Gọi I là trung điểm của cạnh BC. Chứng minh tứ giác BMNI là hình bình hành.
(Vẽ hình và giải chi tiết giúp mình nhé! Cảm ơn nhiều ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAD có HM/HA=HN/HD
nên MN//AD
b: Xét ΔHAD có MN//AD
nên MN/AD=HM/HA=1/2
=>MN=1/2AD=1/2BC
=>MN=BI
mà MN//BI
nên BMNI là hình bình hành
a: Xét ΔAHD có
M là trung điểm của HA
N là trung điểm của HD
Do đó: MN là đường trung bình của ΔAHD
Suy ra: MN//AD
Xét tam giác AHD có :
M là trung điểm của AH ( gt )
N là trung điểm của DH ( gt )
Do đó MN là đường trung bình của tam giác AHD
Suy ra MN // AD ( tính chất ) ( đpcm)
b ) Ta có MN // CD , mà AD // BC ( 2 cạnh đối hình chữ nhật )
nên MN // BC hay MN // BI
Vì MN = \(\frac{1}{2}\) AD ( tính chất đường trung bình của tam giác )
và BI = IC = \(\frac{1}{2}\)BC ( do gt )
mà AD = BC ( 2 cạnh đối hình chữ nhật )
MN = BI BC hay MN // BI
Xét tứ giác BMNI có MN // BI , MN = BI ( c/m trên )
\(\Rightarrow\) tứ giác BMNI là hình bình hành ( đpcm)
c ) Ta có MN // AD và \(AD\perp AB\) nên \(MN\perp AB\)
Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là trực tâm của tam giác ABN . Suy ra \(BM\perp AN\)
Mà BM // IN nên \(AN\perp NI\) hay tam giác ANI vuông tại N ( đpcm )
Chúc bạn học tốt !!!
a) Xét tam giác AHD, có:
* M,N lần lượt là trung điểm của AH, DH (gt)
=> MN là đường trung bình của tam giác AHD
=> MN // AD (t/c) (đpcm)
b) Ta có: BC // AD (ABCD là hình chữ nhật)
=> MN // BI (I thuộc BC) (1)
Ta lại có: I là trung điểm BC (gt)
=> BI = AD : 2 (BC = AD)
Mà MN = AD :2 (MN là đường trung bình tam giác AHD)
=> BI = MN (2)
Từ (1), (2) => MBIN là hình bình hành (đpcm)
c) Xét tam giác AHN vuông tại N có:
* NM là trung tuyến (M là trung điểm AH)
=> NM = MA = MH (hệ quả)
=> tam giác AMN là tam giác cân tại M
Mà MB là đường nối từ đỉnh của tam giác cân AMN
=> MB là đường cao của tam giác AMN
=> góc AMB = 90 độ
=> AD vuông góc với MB
Mà MB // ID (MDIB là hình bình hành)
=> ID vuông góc với AD
=> góc ANI = 90 độ
P/S: Không chắc câu c) cho lắm.
Giải chi tiết:
a) Xét tam giác AHD có:
M là trung điểm của AH (gt)
N là trung điểm của DH (gt)
Do đó MN là đường trung bình của tam giác AHD
Suy ra MN//AD (tính chất) (đpcm)
b) Ta có MN//AD, mà AD//BC (2 cạnh đối hình chữ nhật) nên MN//BC hay MN//BI Vì MN = 1212AD (tính chất đường trung bình của tam giác) và BI = IC = 1212BC (do gt), mà AD = BC (2 cạnh đối hình chữ nhật) MN = BI BC hay MN//BI Xét tứ giác BMNI có MN//BI, MN = BI (c/m trên) Suy ra tứ giác BMNI là hình bình hành (đpcm)
c) Ta có MN//AD và AD⊥⊥AB nên MN⊥⊥AB
Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là trực tâm của tam giác ABN. Suy ra BM⊥⊥AN.
Mà BM//IN nên AN⊥⊥NI hay ΔANIΔANI vuông tại N (đpcm)
# M̤̮èO̤̮×͜×L̤̮ườI̤̮◇
a) Diện tích hình chữ ABCD là:
S = AB . BC = 12 . 7 = 84 (cm2).
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
bn ơi bn viết sai đề à. Chỗ gọi m, n theo thứ tự là các chân đg vuông góc kẻ từ h đến ab, ac chứ ko phải bc
a) Do M là trung điểm AH (gt)
N là trung điểm DH (gt)
⇒ MN là đường trung bình của ∆ADH
⇒ MN // AD
b) Do MN // AD
⇒ MN // BC
⇒ MN // BI
Do MN là đường trung bình của ∆ADH (cmt)
⇒ MN = AD : 2 (1)
Ta có:
I là trung điểm BC (gt)
⇒ BI = BC : 2 (2)
Do ABCD là hình chữ nhật (gt)
⇒ AD = BC (3)
Từ (1), (2) và (3) ⇒ MN = BI
Tứ giác BMNI có:
MN // BI (cmt)
MN = BI (cmt)
⇒ BMNI là hình bình hành
a: Xét ΔHAD có M,N lần lượt là trung điểm của HA, HD
=>MN là đường trung bình của ΔHAD
=>MN//AD và \(MN=\dfrac{AD}{2}\)
b; MN//AD
AD//BC
Do đó: MN//BC
\(MN=\dfrac{AD}{2}\)
\(AD=BC\)
\(BI=\dfrac{BC}{2}\)
Do đó: MN=BI
Xét tứ giác MNIB có
MN//IB
MN=IB
Do đó: MNIB là hình bình hành