K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

2.

a. 3x(12x - 4) - 9x(4x - 3) = 30

<=> 36x2 - 12x - 36x2 + 27x = 30

<=> 36x2 - 36x2 - 12x + 27x = 30

<=> 15x = 30

<=> x = 2

b. x(5 - 2x) + 2x(x - 1) = 15

<=> 5x - 2x2 + 2x2 - 2x = 15

<=> -2x2 + 2x2 + 5x - 2x = 15

<=> 3x = 15

<=> x = 5

12 tháng 9 2021

a) x2 ( 5x3 - x - 1212)= 5x5-x3-1212x

b) ( 3xy - x2 + y ) 2323x2y=  6969x3y2- 2323x4y+ 2323x2y2

c) x2 ( 4x3 - 5xy + 2x ) ( -1212 xy )=(4x5-5x3y+2x3).(-1212xy)

                                                      = -4848x6y +6060x4y2-2424x4y

2/ Tìm x, biết

a) 3x( 12x - 4 ) - 9x (4x - 3 ) = 30

=> 36x2-12x-36x2+27x=30

=> -12x +27x=30

=> 15x = 30

=>x =2

 

b ) x( 5 - 2x ) + 2x ( x - 1 )= 15

=> 5x-2x2+2x2-2x=15

=> 3x=15

=>x=5

18 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ b,x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

1 tháng 6 2021

\(a.\)

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-2\right)\cdot2=-4\\y=\left(-2\right)\cdot5=-10\end{matrix}\right.\)

\(b.\)

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=5\cdot4=20\end{matrix}\right.\)

1 tháng 10 2021

a) x=3 y=13

x=16 y=0

x=4 y=5

x=9 y=1

    

28 tháng 9 2021

a) \(\left(x-2\right)\left(y+1\right)=14\)

Do \(x,y\in N\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=1\\y+1=14\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=14\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+1=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=7\\y+1=2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\left(tm\right)\\y=13\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=16\left(tm\right)\\y=0\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\left(tm\right)\\y=6\left(tm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)

 

28 tháng 9 2021

i cảm ơ

 

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

a) Ta có: (x+1)(y-2)=-2

nên x+1; y-2 là các ước của -2

Trường hợp 1:

\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}

b) Ta có: (x+1)(xy-1)=3

nên x+1;xy-1 là các ước của 3

Trường hợp 1: 

\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)

c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vây: (x,y)=(-1;1)

d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)=(0;0)

4 tháng 2 2021

thanks bạn