cho ba số thực dương a,b,c thỏa mãn 1/a+1/b+1/c=3.
c/m: căn (a+b) +căn(b+c)+căn(c+a)>=3 căn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Cho a, b, c, d là 4 số dương thoả mãn abcd = 1. Chứng minh rằng: \(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\ge8\)
~ ~ ~ ~ ~
Áp dụng BĐT AM - GM, ta có:
\(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\)
\(\ge2\sqrt[4]{\left(1+a\right)\left(1+b\right)}\times2\sqrt[4]{\left(1+c\right)\left(1+d\right)}\)
\(=4\sqrt[4]{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)
\(\ge4\sqrt[4]{2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\times2\sqrt{d}}\)
\(=4\sqrt[4]{16\sqrt{abcd}}\)
= 8 (đpcm)
Dấu "=" xảy ra khi a = b = c = d = 1
Ta có: \(a^2-ab+3b^2+1=\left(a^2-2ab+b^2\right)+ab+\left(b^2+1\right)+b^2\)
\(=\left(a-b\right)^2+ab+\left(b^2+1\right)+b^2\ge ab+2b+b^2\)
\(=b\left(a+b+2\right)\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{1}{\sqrt{b\left(a+b+2\right)}}\)(1)
Tương tự: \(\frac{1}{\sqrt{b^2-bc+3c^2+1}}\le\frac{1}{\sqrt{c\left(b+c+2\right)}}\)(2); \(\frac{1}{\sqrt{c^2-ca+3a^2+1}}\le\frac{1}{\sqrt{a\left(c+a+2\right)}}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3) và sử dụng AM - GM kết hợp liên tục BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta được:
\(P\le\frac{1}{\sqrt{b\left(a+b+2\right)}}+\frac{1}{\sqrt{c\left(b+c+2\right)}}+\frac{1}{\sqrt{a\left(c+a+2\right)}}\)
\(=\Sigma\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)\(\le\Sigma\left(\frac{1}{4b}+\frac{1}{a+b+2}\right)\)(AM - GM)
\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{}\Sigma\left(\frac{1}{a+b+2}\right)\)
\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{}\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}\right)+\frac{1}{2}\right]\)
\(\le\frac{3}{4}+\text{}\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\text{}\Sigma\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)
\(=\frac{3}{4}+\text{}\left[\frac{3}{8}+\text{}\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]\le\frac{3}{4}+\frac{3}{8}+\frac{3}{8}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
Dòng thứ 10 sửa lại cho mình là \(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{2}\right)\right]\)
Do olm có lỗi là mỗi lần bấm dấu ngoặc là số nó tự động nhảy ra ngoài
cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi
Với mọi số thực x; y; z ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) ( tự chứng minh xem; có thể áp dụng )
Ta có: \(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le3\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\left(a+b+c\right)=6\)
=> \(S\le\sqrt{6}\)
Dấu "=" xảy ra <=> a = b = c =1/3
Vậy max S = \(\sqrt{6}\) tại a = b = c = 1/3.
Áp dụng bất đẳng thức Cosi, ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:
\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)
Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:
\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)
\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)
\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)
\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)
\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
đặt \(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=>A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(=>A^2\le\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right].3\)
\(=>A^2\le\left[2\left(a+b+c\right)\right]3=2.3=6\)
\(=>A\le\sqrt{6}\left(dpcm\right)\)
dấu"=" xảy ra<=>a=b=c=1/3
Ta có:\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)=3.2=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Dấu "=" xảy ra <=> a=b=c=1/3
Cần c/m: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge3\sqrt{2}\)
Mặt khác \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)\ge9\)
Nên ta chỉ cần c/m \(P=\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\le\frac{9}{3\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
Ta có
\(P.\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{\left(a+b\right).2}}+\frac{1}{\sqrt{\left(b+c\right).2}}+\frac{1}{\sqrt{\left(c+a\right).2}}\)
\(=\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{b+c}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{c+a}}.\sqrt{\frac{1}{2}}\)
\(\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{c+a}+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{3}{4}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)+\frac{3}{4}\)
\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{4}=\frac{1}{4}.3+\frac{3}{4}=\frac{3}{2}\)
Suy ra \(P\le\frac{3}{2}:\frac{1}{\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
BĐT được c/m
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)