K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>B,F,E,C cùng thuộc một đường tròn

b: Xét (O) có

ΔABA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔABA' vuông tại B

=>BA'\(\perp\)AB

mà CH\(\perp\)AB

nên BA'//CH

Xét (O) có

ΔACA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔACA' vuông tại C

=>AC vuông góc CA'

mà BH vuông góc AC

nên BH//A'C

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BFEC là tứ giác nội tiếp

hay B,F,E,C cùng thuộc một đường tròn

Tâm I là trung điểm của BC

a) Ta có: \(\widehat{CFB}=90^0\)(CF⊥AB)

nên F nằm trên đường tròn đường kính CB(Định lí)(1)

Ta có: \(\widehat{CEB}=90^0\)(BE⊥AC)

nên E nằm trên đường tròn đường kính CB(Định lí)(2)

Từ (1) và (2) suy ra F,E cùng nằm trên đường tròn đường kính CB

hay B,E,F,C cùng thuộc một đường tròn(đpcm)

Tâm I của đường tròn ngoại tiếp tứ giác BEFC là trung điểm của CB

b) Ta có: BEFC là tứ giác nội tiếp(cmt)

nên \(\widehat{EFC}=\widehat{EBC}\)(Cùng nhìn cạnh EC)

\(\Leftrightarrow\widehat{KFC}=\widehat{KBE}\)

Xét ΔKFC và ΔKBE có 

\(\widehat{FKB}\) chung

\(\widehat{KFC}=\widehat{KBE}\)(cmt)

Do đó: ΔKFC∼ΔKBE(g-g)

\(\dfrac{KF}{KB}=\dfrac{KC}{KE}\)(Các cặp cạnh tương ứng tỉ lệ)

\(KE\cdot KF=KB\cdot KC\)(đpcm)

12 tháng 11 2021

 

  
6 tháng 11 2015

Tự vé hình nhé.

 Gọi M là trung điểm của BC

=> ME là đường trung tuyến ứng với cạnh huyền của tam giác vuông EBC => ME=MB=MC  (1)

=> MF ...........................................................................................FBC => MF=MB=MC  (2)

(1)(2) => ME=MF=MB=MC

=> 4 điểm E,F,B,C cùng thuộc dường tròn tâm M đường kính BC

b, Đường cao của đường tròn là gì hả bạn??

Tích cho mình nhé

Tý Giải tiếp nếu đè bài đúng

16 tháng 9 2019

HS tự làm

22 tháng 3 2021

a) Xét (O,R)(O,R) đường kính BCBC có

ˆBFC=ˆBEC=90oBFC^=BEC^=90o (góc nội tiếp chắn nửa đường tròn)

⇒ˆAFH=ˆAEH=90o⇒AFH^=AEH^=90o

Tứ giác AFHEAFHE có ˆAFH+ˆAEH=180oAFH^+AEH^=180o

⇒AEFH⇒AEFH thuộc đường tròn đường kính (AH)(AH)

Tâm II là trung điểm của AHAH.

b) Xét ΔAHEΔAHE và ΔBHDΔBHD có:

 ˆAEH=ˆBDH=90oAEH^=BDH^=90o

ˆAHE=ˆBHDAHE^=BHD^ (đối đỉnh)

⇒ΔAHE∼ΔBHD⇒ΔAHE∼ΔBHD (g-g)

⇒HEHD=HAHB⇒HEHD=HAHB (hai cạnh tương ứng tỉ lệ) 

Mà HA=2HIHA=2HI

⇒HE.HB=2HD.HI⇒HE.HB=2HD.HI

c) Tứ giác AEHFAEHF nội tiếp đường tròn đường kính (AH)(AH) chứng minh câu a

⇒IE=IH=R⇒ΔIEH⇒IE=IH=R⇒ΔIEH cân đỉnh II

⇒ˆIEH=ˆIHE⇒IEH^=IHE^

ˆIHE=ˆBHDIHE^=BHD^ (đối đỉnh)

Từ hai điều trên ⇒ˆIEH=ˆBHD⇒IEH^=BHD^

ˆHEO=ˆHBDHEO^=HBD^ (do ΔOEBΔOEB cân đỉnh O)

⇒ˆIEO=ˆIEH+ˆHEO=ˆBHD+ˆHBD=90o⇒IEO^=IEH^+HEO^=BHD^+HBD^=90o (do ΔDHB⊥DΔDHB⊥D)

⇒IE⊥EO⇒IE⇒IE⊥EO⇒IE là tiếp tuyến của (O)(O).

Chứng minh tương tự

ˆIFH=ˆIHF=ˆDHCIFH^=IHF^=DHC^

ˆHFO=ˆOCHHFO^=OCH^

⇒ˆIFO=ˆDHC+ˆOCH=90o⇒IFO^=DHC^+OCH^=90o

⇒IF⊥FO⇒IF⇒IF⊥FO⇒IF là tiếp tuyến của (O)(O)

image