K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

cau ve hinh ra di rui mk giai cho

25 tháng 7 2017

Bạn làm ơn vẽ đi chứ mình ko biết đăng hình lên online math với lại bạn vẽ xong đăng giùm hình lên luôn nha

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

30 tháng 3 2021

a) xét tam giác ABD và tam giác EBD vuông tại A, E ( gt, DE⊥BC)

            BD chung

            góc ABD = góc EBD ( BD là tia p/g của góc B)

do đó :  tam giác ABD = tam giác EBD ( cạnh huyền + góc nhọn )

30 tháng 3 2021

mình thắc mắc câu d cơ

1 tháng 12 2018

1, Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(tổng 3 góc tam giác)

       \(\Leftrightarrow\widehat{C}+90^o+\widehat{C}=180^o\)

       \(\Leftrightarrow2\widehat{C}=90^o\)

      \(\Leftrightarrow\widehat{C}=45^o\)

 \(\Rightarrow\widehat{A}=\widehat{C}+10=55^o\)

\(\Rightarrow\widehat{B}=180^o-\widehat{A}-\widehat{C}=180^o-55^o-45^o=80^o\)

1 tháng 12 2018

2,
A B C M 1 1

Vì tam giác ABC vuông tại A

=> ^B + ^C = 90o

Vì BM là phân giác ^ABC 

=>^B1 = \(\frac{\widehat{ABC}}{2}\)

Tương tự ^C1 = \(\frac{\widehat{ACB}}{2}\)

\(\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)

Theo tổng 3 góc trong tam giác \(\widehat{BMC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-45^o=135^o\)

17 tháng 10 2018

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)( tổng 3 góc trong 1 tam giác bẳng 180o )

=> \(\widehat{B}+\widehat{C}=180^o-\widehat{A}\)

=> ^B + ^C = 120o

=> 1/2.(^B + ^C ) = 60o

=> ^MBC + ^MCB = 60o ( vì M giao điểm 2 tia phân giác của góc B và góc C )

=> ^BMC = 180o - ( ^MBC + ^MCB ) = 120o

vậy:.....

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

30 tháng 3 2021

mấy câu còn lại đâu ???

 

30 tháng 10 2016

Tam giác ABC vuông tại A có:

ABC + ACB = 900

BM là tia phân giác của ABC

=> ABM = MBC = ABC/2

CM là tia phân giác của ACB

=> ACM = MCB = ACB/2

Tam giác BMC có:

BMC + MBC + MCB = 1800

BMC + ABC/2 + ACB/2 = 1800

BMC + \(\frac{ABC+ACB}{2}\) = 1800

BMC + 900 : 2 = 1800

BMC + 450 = 1800

BMC = 1800 - 450

BMC = 1350

KBC < ABC (KBC = ABC/2)

mà ABC + ACB = 900

=> KBC + ACB < 900

=> 1800 - (KBC + ACB) > 1800 - 900

hay BKC > 900

=> BKC là góc tù

BK là tia phân giác của ABC

=> ABK = KBC = ABC/2 = 500 : 2 = 250

BKC là góc ngoài tại đỉnh K của tam giác ABK

=> BKC = BAK + ABK

= 900 + 250

= 1150

 

30 tháng 10 2016

cảm ơn bạn nha

yeuvui

22 tháng 7 2019

Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath

Tham khảo bài 3 tại link trên nhé!

31 tháng 10 2021

Mik cần gấp ai làm được thì mik cảm ơn nhiều nhé.

31 tháng 10 2021

\(a,\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}=180^0-\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\dfrac{1}{2}\left(180^0-\widehat{BAC}\right)=180^0-\dfrac{1}{2}\cdot100^0=130^0\)