K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

\(\dfrac{1}{1-\dfrac{1}{1-2^{-1}}}+\dfrac{1}{1+\dfrac{1}{2^{-1}}}\)

\(=\dfrac{1+\dfrac{1}{2^{-1}}+1-\dfrac{1}{2^{-1}}}{\left(1-\dfrac{1}{2^{-1}}\right)\left(1+\dfrac{1}{2^{-1}}\right)}\)

\(=\dfrac{2}{\left(1-2\right)\left(1+2\right)}=\dfrac{2}{1-4}=-\dfrac{2}{3}\)

23 tháng 8 2023

Trả lời cho bạn đỗ manh tiến

26 tháng 2 2018

bài này đúng là thị của phi...vô của lí ... :))

\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)

 

Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$Với X + Y + Z = 0, ta chứng minh được :$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$Thật vậy, ta có :$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$$ = \dfrac{1}{X^2} +...
Đọc tiếp

Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$

Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$

Thật vậy, ta có :

$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$

$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$

$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)

$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$

Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$

Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.

1
10 tháng 9 2017

ngu như con lợn

Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)

\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)

\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)

\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)

=>A là số hữu tỉ (ĐPCM)

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

a)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)

b)

 \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

c)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)

d) tương tự câu 1

28 tháng 2 2023

Câu b hướng làm đó là tách con 1/3 và 1/2 ra thành 50 phân số giống nhau. E tách 1/3=50/150 rồi so sánh 1/101, 1/102,...,1/149 với 1/150. Còn vế sau 1/2=50/100 tách tương tự rồi so sánh thôi

AH
Akai Haruma
Giáo viên
28 tháng 2 2023

2a.

$\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
$=1-\frac{1}{50}< 1$ (đpcm)

22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

10 tháng 5 2021

Mình làm được một câu thôi, bạn dựa vào làm nha!undefined

a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)

b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)