K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

Gọi \(d=\left(2n+9;n+5\right)\)

\(\left\{{}\begin{matrix}2n+9⋮d\\n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+9⋮d\\2n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+10\right)-\left(2n+9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> 2n+9 và n+5 nguyên tố cùng nhau

26 tháng 11 2016

 goi UCLN(n+3,2n+5)=d

=>n+3 chia hết cho d

   2n+5 chia hết cho d

=>2n+6 chia hết cho d

=>2n+5 chia hết cho d

=>(2n+6)-(2n+5) chia hết cho d

=>1 chia hết cho d.

mà 1 chia hết cho 1

=>d=1

=>UCLN(2n+5,n+3)=1

=> n+3 và 2n+5 là 2 số nguyên tố cùng nhau

vay....

26 tháng 11 2016

Gọi d là USC (n+3; 2n+5) => (n+3):d và (2n+5):d <=>(2n+6):d và (2n+5):d <=> [(2n+6)-(2n+5)]:d <=> (2n+6-2n-5):d <=>1:d

=> ƯCLN của 2 số đó là 1 => Chúng là số nguyên tố cùng nhau

27 tháng 12 2017

khó quá khó tìm,k đi!!!!!

5 tháng 12 2016

mình giải rồi không thấy ý kiến gì?

7 tháng 12 2017

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.

 

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+2-2n-3⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(-1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)

hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)