Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: DC=DI+IC
=>AD+BC=DI+IC
mà CI=BC
nên AD=DI
=>\(\widehat{DAI}=\widehat{DIA}\)
=>\(\widehat{DIA}=\widehat{IAB}\)
=>AB//DI
=>AB//CD
=>ABCD là hình thang
b: AB//CI
=>\(\widehat{ABI}=\widehat{CIB}\)
mà \(\widehat{CBI}=\widehat{CIB}\)
nên \(\widehat{ABI}=\widehat{CBI}\)
=>BI là phân giác của \(\widehat{ABC}\)
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :
Ta có : MHK = NKH = 90 độ
=> MH // NK
=> Tứ giác MNKH là hình thang
Mà MHK = NKH = 90 độ
=> Tứ giác MNKH là hình thang cân
=> HMN = MNK = 90 độ
=> MNK = NKH = 90 độ
=> MN // HK
=> MN// QP
=> MNPQ là hình thang
Mà QMN = MNP (gt)
=> MNPQ là hình thang cân(dpcm)
Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé
Gọi M là giao điểm DI và AB
Ta có: AM//DC
=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1)
Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)
=> \(\widehat{M}=\widehat{D_1}\)
=> Tam giác ADM cân
=> ID=IM (2)
Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)
Từ (1) , (2) => Tam giác IBM = tam giác ICD
=> BM=DC
Do vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)
a/
Ta có
DC=AD+BC (gt)
CI=BC (gt)
=> DC=AD+CI
Ta có
DC=DI+CI
=> AD=DI => tg ADI cân tại D \(\Rightarrow\widehat{DAI}=\widehat{DIA}\)
Mà \(\widehat{DAI}=\widehat{BAI}\)
\(\Rightarrow\widehat{DIA}=\widehat{BAI}\) Mà 2 góc này ở vị trí so le trong
=> AB//CD => ABCD là hình thang
b/
Ta có
CI=BC (gt) => tg BCI cân tại C \(\Rightarrow\widehat{CBI}=\widehat{CIB}\)
Ta có
AB//CD \(\Rightarrow\widehat{ABI}=\widehat{CIB}\) (góc so le trong)
\(\Rightarrow\widehat{CBI}=\widehat{ABI}\) => BI là phân giác của góc B