Rút gọn biểu thức
C = I x - 1I + I x + 1I - 2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |5 - 7x| = \(\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}5-7x=\frac{1}{4}\\5-7x=-\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}7x=5-\frac{1}{4}\\7x=5+\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}7x=\frac{19}{4}\\7x=\frac{21}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{19}{28}\\x=\frac{3}{4}\end{cases}}\)
A = 3Ix - 1I - 2I5 - 3xI
x | 1 | \(\frac{5}{3}\) | |||
x - 1 | - | 0 | + | + | + |
5 - 3x | - | - | - | 0 | - |
TH1: x < 1
A = 3(1 - x) -2(3x - 5)
= 3 - 3x - 6x + 10
= 13 - 9x
TH2: 1 \(\le\) x <\(\frac{5}{3}\)
A = 3(x - 1) - 2(3x - 5)
= 3x - 3 - 6x + 10
= -3x + 7
TH3:\(\frac{5}{3}\)\(\le\)x
A = 3(x - 1) - 2(5 - 3x)
= 3x - 3 - 10 + 6x
= 9x - 13
B = 4Ix - 3I + 2I2x - 1I + 4 -3xI
Câu này mình không làm do có một dấu giá trị tuyệt đối cuối còn một cái nữa ở đâu thì tôi không biết
a) I5 - 7xI = 1/4
<=> 5 - 7x = 1/4 hay 5 - 7x = -1/4
<=> 7x = 19/4 I <=> 7x = 21/4
<=> x = 19/28 I <=> x = 3/4
b) I4x - 11I = 1/2x - 1
<=> 4x - 11 = 1/2x - 1 hay 4x - 11 = 1 - 1/2x
<=> 4x - 1/2x = -1 + 11 I <=> 4x + 1/2x = 1 + 11
<=> 7/2x = 10 I <=> 9/2x = 12
<=> x = 20/7 I <=> x = 8/3
c) Ix - 5I + Ix - 8I = 4 - 3x (*)
x | 5 | 8 | |||
x - 5 | - | 0 | + | + | + |
x - 8 | - | - | - | 0 | + |
TH1: x < 5
(*) <=> 5 - x + 8 - x = 4 - 3x
<=> x = -9
TH2: 5\(\le\)x < 8
(*) <=> x - 5 + 8 - x = 4 - 3x
<=> 3x = 1
<=> x =\(\frac{1}{3}\)
TH3: 8\(\le\)x
(*) <=> x - 5 + x - 8 = 4 - 3x
<=> 5x = 17
<=> x =\(\frac{17}{5}\)
Áp dụng Bdt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2001\right|+\left|x-1\right|\)
\(\ge\left|x-2001+1-x\right|=2000\)
Dấu = khi \(1\le x\le2001\)
Vậy MinA=2000 khi \(1\le x\le2001\)
a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)
TH1: x - 1 = 3
x = 4
TH2: x - 1 = - 3
x = - 2
b) Tương tự câu a.
c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)
\(\left|\left|2x-3\right|-x+1\right|=34\)
TH1: \(\left|2x-3\right|-x+1=34\)
\(\left|2x-3\right|-x=33\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\) (tm)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)
TH2: \(\left|2x-3\right|-x+1=-34\)
\(\left|2x-3\right|-x=-35\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\) (l)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)
d) Tương tự câu c.
Ta có:
\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)
Vậy MinB=2013 khi x=2
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
\(\left|3x-1\right|=\left|2x+5\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-1=2x+5\\3x-1+2x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-2x=5+1\\5x+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{5}\end{cases}}\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|3y-1\right|\ge0\\\left|z+2\right|\ge0\end{cases}}\Rightarrow\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|3y-1\right|=0\\\left|z+2\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\3y-1=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\\z=-2\end{cases}}\)
Vậy x = 1, \(y=\frac{1}{3}\),z = -2
a) |x+1|+|x+2+|x+3|=4x
<=> x+1+x+2+x+3=4x
<=> 3x+6=4x
<=> 6=4x-3x
<=> x=6
Ta chia trường hợp như sau:
Với \(x< -1\Rightarrow\left|x-1\right|=-x+1;\left|x+1\right|=-x-1\)
Vậy \(C=-x+1-x-1-2x=-4x\)
Với \(-1\le x\le1\Rightarrow\left|x-1\right|=-x+1;\left|x+1\right|=x+1\)
Vậy \(C=-x+1+x+1-2x=2-2x\)
Với \(x>1\Rightarrow\left|x-1\right|=x-1;\left|x+1\right|=x+1\)
Vậy \(C=x-1+x+1-2x=0\)