Cho x,y là hai số dương và x > y.
Chứng minh rằng \(\sqrt{x}-\sqrt{y}< \sqrt{x-y}.\)
Đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x, y>0 nên \(\sqrt{xy}>0\)\(\Rightarrow\) \(2\sqrt{xy}>0\)
\(\Leftrightarrow\)\(x+y+2\sqrt{xy}\ge x+y\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(đpcm).
ta có: \(x\sqrt{x}+y\sqrt{y}\ge x\sqrt{y}+y\sqrt{x}\) (1)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\ge\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y-\sqrt{xy}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) luôn đúng
=> (1) luôn đúng => đpcm
ko bít ????????????????????????????______________________________________????????????????????????????????????????
Ta có:
\(VT=\frac{x}{y}+1+\frac{y}{x}+1-2\ge2\sqrt{\frac{x}{y}}+2\sqrt{\frac{y}{x}}-2\ge\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}+2\sqrt{\sqrt{\frac{x}{y}}.\sqrt{\frac{y}{x}}}-2=VP\)
Dấu "=" xảy ra khi \(x=y\)
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)
\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)
Vì x > y nên 2 vế đều là số dương. Bình phương 2 vế được
\(x+y-2\sqrt{xy}< x-y\)
\(\Leftrightarrow2\sqrt{xy}-2y>0\)
\(\Leftrightarrow\sqrt{xy}-y>0\)
\(\Leftrightarrow\sqrt{y}.\left(\sqrt{x}-\sqrt{y}\right)>0\) (đúng)
Vậy \(\sqrt{x}-\sqrt{y}< \sqrt{x-y}\)