K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Typo ? i think it \(A=\left(x+1000\right)^2+2y^2-8y\)

\(=\left(x+1000\right)^2+2y^2-8y+8-8\)

\(=\left(x+1000\right)^2+2\left(y^2-4y+4\right)-8\)

\(=\left(x+1000\right)^2+2\left(y-2\right)^2-8\)

Dễ thấy; \(\left(x+1000\right)^2\ge0;2\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x+1000\right)^2+2\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x+1000\right)^2+2\left(y-2\right)^2-8\ge-8\)

Xảy ra khi \(\left(x+1000\right)^2=0;2\left(y-2\right)^2=0\Rightarrow\hept{\begin{cases}x=-1000\\y=2\end{cases}}\)

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

18 tháng 1 2017

lớn nhất khi x=0 => A = 95

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

10 tháng 8 2016

x^2 - 2x +101= x^2 - 2x +1 +100

                   = (x-1)^2 +100

(x-1)^2 >=0

=> (x-1)^2 + 100 >= 100

dấu = xảy xa <=> x=1

 Vậy, GTNN của a là 100 khi x bằng 1

10 tháng 8 2016

  x2-2x+101

=x2-2x+12+100

=(x-1)2+100

Vì (x-1)2\(\le\)0 nên (x-1)2+100\(\le\)100

Vậy GTLN là 100 khi x=1

24 tháng 6 2017

\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)

24 tháng 6 2017

b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-3x-3x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)

\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)

Hay \(P\ge10\) với mọi giá trị của \(x\in R\).

Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)

\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy.....

Chúc bạn học tốt!!!