K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

\(\sqrt{-\left|3-x\right|}\)

Để căn thức trên có nghĩa thì :

\(\sqrt{-\left|3-x\right|}\)\(\ge0\)

24 tháng 7 2017

Để căn thức trên có nghĩa.

Mà căn của 1 số ko thể âm.

=>-|3-x| dương hoặc =0.

Loại trường hợp dương vì GTTĐ của 1 số ko thể nhỏ hơn 0.

=>-|3-x|=0.

=>|3-x|=0.

=>3-x=0.

=>x=3.

Vậy x=3

e: ĐKXĐ: \(x\ge\dfrac{5}{2}\)

g: ĐKXĐ: \(x\le-4\)

a: ĐKXĐ: \(x\in\varnothing\)

b: ĐKXĐ: \(-\sqrt{3}\le x\le\sqrt{3}\)

19 tháng 2 2020

\(\sqrt{2020}+\sqrt{-\frac{3}{x+3}}\)

Căn thức trên có nghĩa khi:\(\hept{\begin{cases}x+3\ne0\\-\frac{3}{x+3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x< -3\end{cases}}}}\)

\(\Rightarrow x< -3\)

12 tháng 6 2019

\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)

\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)

\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)

\(\Rightarrow x\ge-3\)

12 tháng 6 2019

\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)

\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)

Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2

17 tháng 9 2021

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

17 tháng 9 2021

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

6 tháng 6 2019

\(b,\)\(\sqrt{\frac{2}{x^2}}\)

Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ

\(\Rightarrow x^2\ne0\)

\(\Rightarrow x\ne0\)

6 tháng 6 2019

a) \(\sqrt{\frac{-5}{x^2+6}}\)

Để biểu thức có nghĩa thì \(x^2+6< 0\)

Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)

Vậy biểu thức này không xác định