K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

\(A=36x^2+24x+7\)

\(A=\left(6x\right)^2+2.6x.2+2^2+3\)

\(A=\left(6x+2\right)^2+3\)

Vì \(\left(6x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(6x+2\right)^2+3\ge3\forall x\)

\(\Rightarrow A\ge3\forall x\)

\(\Rightarrow A=3\Leftrightarrow\left(6x+2\right)^2=0\)

\(\Leftrightarrow6x+2=0\)

\(\Leftrightarrow6x=-2\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy  \(Amin=3\Leftrightarrow x=-\frac{1}{3}\)

30 tháng 9 2017

36x2+24x+7

=36x2+24x+4+3

=(36x2+24x+4)+3

=(6x+2)2+3

vì bình phương của 1 số luôn lớn hơn hoặc bằng 0  

suy ra (6x+2)2>=0

suy ra (6x+2)2+3>=3

Min của A=3 khi:

6x+2=0

6x= -2

x=-2/6

vậy Mim của A=3 khi x=-2/6

19 tháng 2 2017

\(A=36x^2+24x+7\)

\(A=\left(6x\right)^2+2.6x.2+2^2-2^2+7\)

\(A=\left(6x+2\right)^2+3\)

\(\left(6x+2\right)^2\ge0\)

\(\Rightarrow A\ge3\)

\(\Rightarrow Min_A=3\)

Để đạt GTNN thì \(\left(6x+2\right)^2=0\)

\(\Leftrightarrow6x+2=0\Leftrightarrow x=\frac{-1}{3}\)

Vậy A đạt GTNN tại x=\(\frac{-1}{3}\)

18 tháng 2 2017

-1/3

Để đa thức này nhận x=1 làm nghiệm thì \(a^2\cdot1^{2014}-5a\cdot1^{2015}-24\cdot1^{2016}=0\)

\(\Leftrightarrow a^2-5a-24=0\)

=>(a-8)(a+3)=0

=>a=8 hoặc a=-3

24 tháng 4 2022

Bạn ưi, a-8 và a+3 lấy đâu ra vậy

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

30 tháng 11 2014
  1. A=x2+6x+10=x^2+2.3x+9+1=(x+3)2+1 dat gia tri nho nhat la 1 khi do x=-3

 

P=(√x+3√x+2+4xx+3x+9x−√x−6):(√xx+3+2√x+3x+5√x+6)

=[(√x+3)(√x−3)(√x+2)(√x−3)+4xx+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]

=x−9+4xx+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)

=4xx+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)

=4x(√x+1)(√x−3)(√x+1)=4xx−3

b/ P=48⇔4xx−3=48

⇔4x=48√x−144

⇔4x−48√x+144=0

⇔(2√x−12)2=0

⇔2√x−12=0⇔√x=6⇔x=36(TM)

Vậy................

13 tháng 1 2022
Cái gì ê? Chẳng hiểu?