tim xeQ biet
a.-2x+1<7
b(x+2).(x-3)<0
minh can gap nha
nhanh mih se k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-5\right)\left(x+5\right)=264\)
\(\Leftrightarrow x^3+64-x\left(x^2-25\right)=264\)
\(\Leftrightarrow x^3+64-x^3+25x=264\)
\(\Leftrightarrow25x=200\)
\(\Leftrightarrow x=8\)
a) Có BC(9;8)={0;72;....}
Mà x thuộc BC(9;8) và x nhỏ nhất nên x=0
b) tương tự nha !
__cho_mình_nha_chúc_bạn_học _giỏi__
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1< x< 2\\x\in\varnothing\end{matrix}\right.\) vậy \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\dfrac{2}{3}\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< \dfrac{-2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{-2}{3}\end{matrix}\right.\) vậy \(x>2\) hoặc \(x< \dfrac{-2}{3}\)