Giả thiết:
- Cho tam giác MNE
- Trên cạnh MN lấy điểm K. Từ đó đường thẳng // với NE cắt ME tại I
Kết luận:
1) Tính MKI và MIK
2) Từ I kẻ đường thẳng // với MN cắt NE tại điểm Q. Tính IQE và KIQ
3) Tính QIE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác ABC cân tại A
=> ^B = ^C
Mà ^A + ^B + ^C = 180°
=> ^B + ^C = 180° - ^A
=> ^B = ^C = ( 180° - 50° )/2
=> ^B = ^C = 130°/2 = 65°
b) Ta có: ^B = ^ACB ( Tam giác ABC cân )
Mà ^ACB = ^ECN ( hai góc đối )
=> ^B = ^ECN
Xét tam giác MBD và tam giác NCE có:
^MDB = ^NEC ( = 90° )
BD = CE ( gt )
^B = ^ECN ( cmt )
=> ∆MBD = ∆NCE ( g.c.g )
=> MD = NE
Ta có: MD vuông góc với BE
NE vuông góc với BE
=> MD // NE
c) Vì MD // NE
=> ^DMI = ^ENI ( so le trong )
Xét tam giác DMI và tam giác ENI có:
^DMI = ^ENI ( cmt )
MD = EN ( cmt )
^MDI = ^NEI ( = 90° )
=> ∆DMI = ∆ENI ( g.c.g )
=> DI = IE ( hai cạnh tương ứng )
=> I là trung điểm của DE ( đpcm )
a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)
Xét tg vuông MBD và tg vuông NCE có
BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE
b/ Xét tứ giác MEND có
\(MD\perp BC;NE\perp BC\) => MD//NE
MD=NE (cmt)
=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)
MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
c/ ta có
\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)
\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)
\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO
Xét tg vuông ABO và tg vuông ACO có
AB=AC (Do tg ABC cân tại A)
BO=CO (cmt)
\(\widehat{ABO}=\widehat{ACO}=90^o\)
=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)
=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)