Cho các số: 117; 3447; 5085; 534; 9348; 123.
a) Em hãy viết tập hợp A gồm các số chia hết cho 9 trong các số trên.
b) Có số nào trong các số trên chỉ chia hết cho 3 mà không chia hết cho 9 không? Nếu có, hãy viết các số đó thành tập hợp B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100
117=(y+x)(y-x)=3.39=39.3=9.13=13.9
Ta cá bảng
x-y | 3 | 39 | 9 | 13 |
x+y | 39 | 3 | 13 | 9 |
x | 21 | 21 | 11 | 11 |
y | 18 | -18 | 2 | -2 |
chỉ có x=11 và y=2 là số nguyên tố
vậy ....
a:
b: \(x^2+117=y^2\)
=>\(x^2-y^2=-117\)
=>\(\left(x-y\right)\left(x+y\right)=-117\)
\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)
=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)
TH1: x-y=1 và x+y=-117
=>2x=-116 và x-y=1
=>x=-58(loại)
TH2: x-y=-1 và x+y=117
=>2x=118 và x-y=-1
=>x=59 và y=59+1=60(loại)
TH3: x-y=-3 và x+y=39
=>2x=42 và x-y=-3
=>x=21(loại)
TH4: x-y=3 và x+y=-39
=>2x=-42 và x-y=3
=>x=-21(loại)
TH5: x-y=9 và x+y=-13
=>2x=-4 và x-y=9
=>x=-2(loại)
TH6: x-y=-9 và x+y=13
=>2x=4 và x-y=-9
=>x=2 và y=2+9=11
=>Nhận
Vậy: x=2 và y=11
ta có ; -nếu y2 là số chẵn mà y là số nguyên tố =>y=2
=>x2 +117 =22 =4( vô lý)
=>y2 là số lẻ mà 117 là số lẻ =>x2 là số nguyên tố chẵn => x=2
thay vào ta có :
22 +117 =y2 =>121 = y2 =>112 =y2 =>y=11
vậy x=2 ; y=11
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126 Mà 126 = 2.\(3^2\).7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\)
Vậy: Hai số nguyên tố x,y là 2 và 11.
Đúng thì chọn mình nhé! Tốt nhất là bạn hãy thử lại nữa đấy!
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126. Mà 126 = 2.32.7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\).
Vậy: Hai số nguyên tố x,y là 2 và 11.
x2 + 117 = y2
Dễ thấy: y2 > 117
=> y > 10
Do y nguyên tố nên y lẻ => y2 lẻ
Mà x2 + 117 = y2 nên x2 chẵn => x chẵn
Mà x nguyên tố nên x = 2
Thay vào đề bài ta có: 22 + 117 = y2
=> 121 = y2 = 112
=> y = 11 (thỏa mãn)
Vậy x = 2; y = 11
a) Ta có: \(1+1+7=9; \\3+4+4+7=18;\\5+0+8+5=18;\\ 5+3+4=12; \\9+3+4+8=24;\\ 1+2+3=6.\)
Các số 117; 3447; 5085 chia hết cho 9 (vì có tổng các chữ số chia hết cho 9)
=> A = {117; 3447; 5085}
b) Có các số: 534; 9348; 123 chỉ chia hết cho 3 mà không chia hết cho 9.
=> B = {534; 9348; 123}