Phân tích các đa thức thành nhân tử
6xy^2-8x^2y+10x63y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3x^2-6xy+8x-16y\)
\(=\left(3x^2-6xy\right)+\left(8x-16y\right)\)
\(=3x\left(x-2y\right)+8\left(x-2y\right)\)
\(=\left(x-2y\right)\left(3x+8\right)\)
h: \(9y^2-4x^2+4x-1\)
\(=9y^2-\left(4x^2-4x+1\right)\)
\(=\left(3y\right)^2-\left(2x-1\right)^2\)
\(=\left(3y-2x+1\right)\left(3y+2x-1\right)\)
\(\left(x-1\right)^2-25\)
\(=x^2-2x+1-25\)
\(=x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x.\left(x-6\right)+4.\left(x-6\right)\)
\(=\left(x+4\right).\left(x-6\right)\)
a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)
b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
d, \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
a) x2 - 7x + 5 = ( x2 - 2 . 7/2 . x + 49 / 4 ) + 5 - 49 / 4
= (x - 7/2)^2 - 29/4
= (x - 7/2)^2 - (√ 29 / 2 )^2
= ( x - ( 7 + √ 29 / 2 )). ( x + ( 7 - √ 29 / 2 ))
a)\(=3x\left(x+2y\right)\)
c)\(=\left(x-7\right)\left(x-1\right)\)
b)\(=x\left(x-2y\right)+3\left(x-2y\right)=\left(x+3\right)\left(x-2y\right)\)
d)\(=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(a,3x^2+6xy=3x\left(x+2y\right)\\ c,x^2-8x+7=\left(x^2-x\right)-\left(7x-7\right)=x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(x-7\right)\\ b,x^2-2xy+3x-6y=\left(x^2+3x\right)-\left(2xy+6y\right)=x\left(x+3\right)-2y\left(x+3\right)=\left(x+3\right)\left(x-2y\right)\\ d,4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
a) Ta có: \(x^2y^2-x^2+6xy-9y^2\)
\(=x^2y^2-\left(x^2-6xy+y^2\right)\)
\(=\left(xy\right)^2-\left(x-3y\right)^2\)
\(=\left(xy-x+3y\right)\left(xy+x-3y\right)\)
b) Ta có: \(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=9-\left(x-y\right)^2\)
\(=\left(9-x+y\right)\left(9+x-y\right)\)
a) \(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
b) \(8x^3+y^3-6xy\left(2x+y\right)=\left(8x^3+y^3\right)-6xy\left(2x+y\right)=[\left(2x\right)^3+y^3]-6xy\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-6xy\left(2x+y\right)=\left(2x+y\right)\left(4x^2-2xy+y^2-6xy\right)\)
\(=\left(2x+y\right)\left(4x^2-8xy+y^2\right)\)
c) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=[\left(3x+2\right)-\left(x-1\right)]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2=\left(2x+3\right)\left(2x+3\right)\)
a) Ta có: \(8x+4x^2-12xy\)
\(=4x\left(2+x-3y\right)\)
b) Ta có: \(5x^3-10x^2+5x\)
\(=5x\left(x^2-2x+1\right)\)
\(=5x\left(x-1\right)^2\)
c) Ta có: \(x^3+x^2y-xy^2-y^3\)
\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
d) Ta có: \(x^2-8x-9\)
\(=x^2-9x+x-9\)
\(=\left(x-9\right)\left(x+1\right)\)
a. `8x+4x^2-12xy=4x(2+x-3y)`
b) `5x^3-10x^2+5x=5x(x^2-2x+1)`
c) `x^3+x^2y-xy^2-y^3=x^2(x+y)-y^2(x+y)=(x+y)(x^2-y^2)=(x+y)^2 (x-y)`
d) `x^2-8x-9=(x^2-2.x.4+4^2)-25=(x-4)^2-5^2=(x+1)(x-9)`