a. Chứng minh: A, B, O, C cùng thuộc một đường tròn
b. Chứng minh: CD = 2OH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOAB cân tại O
mà OM là đường cao
nên OM là phân giác
Xét ΔOAM và ΔOBM có
OA=OB
góc AOM=góc BOM
OM chung
=>ΔOAM=ΔOBM
=>góc OBM=90 độ
=>MB là tiếp tuyến của (O)
b:F ở đâu vậy bạn?
a: Xét tứ giác ABOC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
1: Xét ΔOBC có
OH vừa là đường cao, vừa là trung tuyến
=>ΔOBC cân tại O
=>OB=OC=R và OH là phân giác củagóc BOC
=>C thuọc (O)
Xét ΔOBA và ΔOCA có
OB=OC
góc BOA=góc COA
OA chung
=>ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
2: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM=AH*AO
1: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
mà BC\(\perp\)OA
nên CD//OA
2: Ta có: OA là đường trung trực của BC
OA cắt BC tại E
Do đó: E là trung điểm của BC và OA\(\perp\)BC tại E
Xét ΔOBA vuông tại B có BE là đường cao
nên \(OE\cdot OA=OB^2\)
=>\(OE\cdot OA=OD^2\)
=>\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)
Xét ΔOED và ΔODA có
\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)
\(\widehat{EOD}\) chung
Do đó: ΔOED~ΔODA
=>\(\widehat{ODE}=\widehat{OAD}\)
a: góc BEI+góc BDI=180 độ
=>BEID nội tiếp
góc CEI+góc CFI=180 độ
=>CEIF nội tiếp
b: góc IED=góc IBD=1/2*sđ cung BI
góc IFE=góc ICE=1/2*sđ cung BI
=>góc IED=góc IFE
góc IDE=góc IBE=1/2*sđ cung IC
góc IEF=góc ICF=1/2*sđ cung IC
=>góc IDE=góc IEF
=>ΔIDE đồng dạng với ΔIEF
a: gó ACB=1/2*180=90 độ
=>BC vuông góc MA
góc ADB=1/2*180=90 độ
=>AD vuông góc MB
góc MCN+góc MDN=180 độ
=>MCND nội tiếp
b: Xet ΔMAB có
AD,BC là đường cao
AD cắt CB tại N
=>N là trực tâm
=>M,N,H thẳng hàng
c: góc ODI=góc ODN+góc IDN
=góc IND+góc OAD
=góc OAD+góc HNA=90 độ
=>OD là tiếp tuyến của (I)