K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

E = 5-x/x-2 nguyên khi

5 - x ⋮ x - 2

=> x - 2 + 7 ⋮ x - 2

=> 7 ⋮ x - 2

=> x - 2 thuộc Ư(7)

20 tháng 2 2019

Còn ý b bạn

19 tháng 6 2017

a, \(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)

Để E có giá trị nguyên <=> x - 2 \(\in\)Ư(3) = {1;-1;3;-3}

x - 21-13-3
x315-1

b, Để E có GTNN <=> \(\frac{3}{x-2}\) có GTNN <=> \(\frac{3}{2-x}\)có GTLN <=> 2 - x có GTNN <=> x = 1 (vì x \(\in\)Z; x < 2)

Lúc đó GTNN của E = \(\frac{3}{1-2}-1=-4\)(khi x = 1)

19 tháng 6 2017

a/ E = \(-\left(\frac{x-2-3}{x-2}\right)=-1+\frac{3}{x-2}\)Để E \(\in Z\)thì \(x-2=\left\{1,2,3,-1,-2,-3\right\}\)Thay lần lượt vào ta có

\(\frac{3}{3}=1\left(TM\right)\)\(x=1\Rightarrow x-2=1\Rightarrow x=3\)(TM)   Lần lượt thay các số vào sẽ tìm được x 

b/ Để E Min Thì E= \(\frac{3}{x-2}\)đạt GTNN vậy A= x-2 đạt GTLN Hay \(x-2\le2\)Vậy dấu "=" Xảy ra khi x= 4

Vậy E đạt GTNN = 1/2 tại x=4

15 tháng 7 2018

\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(E=\frac{x}{\sqrt{x}-1}\)

15 tháng 7 2018

b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Rightarrow\sqrt{x}-1>0\)  vì tử của phân số luôn \(\ge0\forall x\ge0\)

\(\Rightarrow x>1\)

kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)

vậy \(x>1\) thì \(E>1\)

2 tháng 2 2017

a) Muốn C \(\in\)Z thì x+12    \(⋮\)x+5

                        \(\Rightarrow\) x+5+7 \(⋮\)x+5

                       \(\Rightarrow\)         7 \(⋮\)x+5

                       \(\Rightarrow\) x+5 \(\in\){-7 ; -1 ; 1 ; 7}

TH1:  x+5 = -7 \(\Rightarrow\) x= -12

TH2: x+5 = -1 \(\Rightarrow\) x= -6

TH3: x+5= 1  \(\Rightarrow\) x= -4

TH4: x+5= 7  \(\Rightarrow\)x= 2

Vậy x\(\in\){ -12 ; -6 ; -4 ; 2 }  thì \(\frac{x+12}{x+5}\)có giá trị nguyên

Ta có \(P=\frac{7x-14}{x+5}=7+\frac{21}{x+5}\)

P có giá trị nguyên =>\(\frac{21}{x+5}nguyên\)

\(\Rightarrow x+5\inƯ\left(21\right)\)

\(\Rightarrow x=\left\{-26;-16;-12;-8;-6;-4;-2;2\right\}\)

7 tháng 5 2018

ahihi

8 tháng 8 2019

a) Ta có : \(x\ne1\)

Vì \(x\inℤ\Rightarrow\frac{3-x}{x-1}\inℤ\Leftrightarrow\hept{\begin{cases}3-x\inℤ\\x-1\inℤ\end{cases}}\)

Mà \(\frac{3-x}{x-1}=\frac{-x+3}{x-1}=\frac{-x+1+2}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=-1+\frac{2}{x-1}\)

Lại có : \(-1\inℤ\Rightarrow E\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)\)

\(\Rightarrow x-1\in\left\{\pm1;\pm2\right\}\)

Lập bảng xét 2 trường hợp ta có : 

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)
\(x\)\(2\)\(0\)\(3\)\(-1\)

Vậy \(x\in\left\{2;0;3;-1\right\}\)