Tìm x:\(4^x\)+ \(4^{x+3}\)= 4160
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x+4x+3=4160
=>4x+4x.43=4160
=>4x(1+64)=4160
=>65.4x=4160
=>4x=64
=>x=3
Vậy x=3
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow x=3\)
\(4^x+4^{x+3}=4160\)
\(4^x\times\left(1+4^3\right)=4160\)
\(4^x\times\left(1+64\right)=4160\)
\(4^x\times65=4160\)
\(4^x=\frac{4160}{65}\)
\(4^x=64\)
\(4^x=4^3\)
\(x=3\)
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
\(4^{x+3}+4^x=4160\)
\(\Rightarrow4^x.4^3+4^x=4160\)
\(\Rightarrow4^x.\left(4^3+1\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=4160:65\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
\(4^{x+3}+4^x=4160\)
\(\left(4^x\cdot4^3\right)+4^x=4160\)
\(4^x\cdot\left(4^3+1\right)=4160\)
\(4^x\cdot\left(64+1\right)=4160\)
\(4^x\cdot65=4160\)
\(4^x=4160:65\)
\(4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Thưa toàn thể quý vị, chào mừng các bạn đến đây
\(4^x+4^{x+3}=4160\)
\(\Leftrightarrow4^x.\left(1+4^3\right)=4160\)
\(\Leftrightarrow4^x.65=4160\)
\(\Leftrightarrow4^x=4160:65=64\)
\(\Rightarrow x=3\)
4x+4x+3=4160
\(\Rightarrow\)4x+4x.43=4160
\(\Rightarrow\)4x.(1+43)=4160
\(\Rightarrow\)4x.65=4160
\(\Rightarrow\)4x=4160:65
\(\Rightarrow\)4x=64
\(\Rightarrow\)4x=43
\(\Rightarrow\)x=3
ta có :
4160 chia liên tục cho 4 được 9 lần
mà 9 - 3 = 6 . vậy 2 lần x = 6
x = 6 : 2 = 3
nhé !
dễ
Bạn tự suy nghĩ cách làm nhé !
\(4^x+4^{x+3}=4160\)
\(x=3\)
=> 4x[1 + 43] = 4160
=> 4x . 65 = 4160
=> 4x = 64
=> x = 3
Ta có: 4\(^x\)+4\(^{x+3}\)=4160
\(\Rightarrow\)4\(^x\).(1+4\(^3\))=4160
\(\Rightarrow\)4\(^x\).65=4160
\(\Rightarrow\)4\(^x\)=64
\(\Rightarrow\)4\(^x\)=4\(^3\)\(\Rightarrow\)x=3