tính :
\(\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)
ai làm nhanh nhất mk sẽ tk cho bạn đó nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 1/2*5 + 1/5*8 + 1/8*11 + ....... + 1/29*32
E = 1/2 - 1/5 +1/5 - 1/8 + 1/8 - 1/11 + ........+1/29 - 1/32
E = 1/2 - 1/32
E = 15/32
nếu đúng thì k mik với nha
=\(18.\left(\frac{-5}{6}\right)^2-2.\frac{1}{4}.\frac{-4}{5}+2\)
\(=18.\frac{25}{36}+\frac{2}{5}+2\)
\(=\frac{25}{2}+\frac{12}{5}=\frac{149}{10}\)
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
đề cần chứng minh nhỏ hơn 1 hay 11
nếu 1 thì
\(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{100^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrowđcm\)
nếu nhỏ hơn 11 thì làm như thế thêm câu
vì đẳng thức trên <1<11
=>đcm
\(=\frac{27}{20}\)nhé!
^_^
kb đi kb đi kb đi NHA