nếu a và b nguyên tố cùng nhau, chứng minh a+b là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi UCLN ( a, a + b ) = d ( d \(\in\)N* )
Ta có :
a \(⋮\)d
a + b \(⋮\)d
Từ đó ta có :
a + b - a \(⋮\)d
=> b\(⋮\)d
Mà a\(⋮\)d ; b\(⋮\)d => d \(\in\)ƯC ( a , b )
Mặt khác ƯCLN ( a , b ) = 1 nên 1 \(⋮\)d
Suy ra d \(\in\)Ư ( 1 ) = { 1 } hay d = 1
Vậy nếu a, b nguyên tố cùng nhau thì a và a + b nguyên tố cùng nhau .
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử k là ước nguyên tố của a+b (k∈N∗)
⇒a+b ⋮ k.
Vì a+b⋮k⇒a⋮k và b⋮k
⇒k∈ƯC(a;b)⇒k∈ƯC(a;b)
Mà nếu a và b nguyên tố cùng nhau (hay (a,b)=1) thì ƯCLN(a,b)=1
⇒k=1không phải là số nguyên tố trái với giả thiết đặt ra
Do đó không tồn tại ước nguyên tố k của a+b k∈N∗
Do đó a+b nguyên tố cùng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử c và a . b có cùng chung một ước nguyên tố p nào đó.
Do a . b chia hết cho p nên a chia hết cho p hoặc b chia hết cho p (Do p là số nguyên tố).
+) Nếu a chia hết cho p kết hợp với c chia hết cho p ta có p = 1 (vô lí).
+) Nếu b chia hết cho p chứng minh tương tự cũng suy ra điều vô lí.
Vậy giả sử đó sai hay ta có đpcm.
Ta có
\(\left(a,b,c\right)=1\Rightarrow\left(a,b\right)=1\Rightarrow\left(a.b,c\right)=1\)