3^x+3^x+1+3^x+2+.....+3^x+2017=3^2020-9:2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)
⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)
\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)
⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)
⇒ \(x+2021=0\)
⇔ \(x=-2021\)
\(Vậy\) \(x=-2021\)
Hello bạn, mk cx tên Mai nek.
\(\frac{2}{5}.\left(x-1\right)+1=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=\frac{3}{5}-1\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=-\frac{2}{5}\)
\(\Rightarrow x+1=-\frac{2}{5}:\frac{2}{5}\)
\(\Rightarrow x+1=-1\)
\(\Rightarrow x=-1-1\)
\(\Rightarrow x=-2\)
\(\left(\frac{2}{7}\times x+1\right)\times\left(3-\frac{1}{2}\times x\right)=0\)
\(TH1:\frac{2}{7}\times x+1=0\)
\(\frac{2}{7}\times x=-1\)
\(x=-\frac{2}{7}\)
\(TH2:3-\frac{1}{2}\times x=0\)
\(\frac{1}{2}\times x=3\)
\(x=\frac{3}{2}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{7}\right\}\)
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}+\frac{x+4}{2017}=-4\)
=> \(\left[\frac{x+1}{2020}+1\right]+\left[\frac{x+2}{2019}+1\right]+\left[\frac{x+3}{2018}+1\right]+\left[\frac{x+4}{2017}+1\right]=-4\)
=> \(\left[\frac{x+1}{2020}+\frac{2020}{2020}\right]+\left[\frac{x+2}{2019}+\frac{2019}{2019}\right]+\left[\frac{x+3}{2018}+\frac{2018}{2018}\right]+\left[\frac{x+4}{2017}+\frac{2017}{2017}\right]=-4\)
=> \(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}+\frac{x+2021}{2017}=-4\)
=> \(\left[x+2021\right]\left[\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right]=-4\)
Do \(\frac{1}{2020}>\frac{1}{2019}>\frac{1}{2018}>\frac{1}{2017}\)nên \(\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\ne0\)
Do đó : x + 2021 = -4 => x = -4 - 2021 = -2025
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
Lời giải:
Có:
$A=3^x+3^{x+1}+3^{x+2}+....+3^{x+2017}=3^x(1+3+3^2+3^3+....+3^{2017})$
$3A=3^x(3+3^2+3^3+...+3^{2018})$
$\Rightarrow 3A-A=3^x[(3+3^2+3^3+...+3^{2018}) -(1+3+3^2+....+3^{2017})]$
$\Rightarrow 2A=3^x(3^{2018}-1)=3^{2020}-9$
$\Rightarrow 3^x(3^{2018}-1=3^2(3^{2018}-1)$
$\Rightarrow 3^x=3^2$
$\Rightarrow x=2$