K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{EAB}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

a: Xét tứ giác BDHF có

góc BDH+góc BFH=180 độ

=>BDHF là tứ giác nội tiếp

b: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có

góc AHF=góc CHD

=>ΔHAF đồng đạng với ΔHCD

=>HA/HC=HF/HD

=>HA*HD=HF*HC

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng vơi ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HB*HE=HA*HD

d: Xét ΔAEF và ΔABC có

góc AEF=góc ABC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

a: góc AFH+góc AEH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc IBF=góc IEC

Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc I chung

=>ΔIBF đồng dạng với ΔIEC

=>IB/IE=IF/IC

=>IB*IC=IE*IF

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

1: góc BFC=góc BEC=90 độ

=>BFEC nộitiếp

Tâm là trung điểm của BC

2: góc EFC=góc DAC

góc DFC=góc EBC

góc DAC=góc EBC

=>góc EFC=góc DFC

=>FC là phân giác của góc EFD

BFEC nội tiếp

=>góc AFE=góc ACB

mà góc A chung

nên ΔAFE đồng dạng với ΔACB

=>AF/AC=AE/AB

=>AF*AB=AC*AE

a: Xét tứ giác BDHF có 

\(\widehat{BDH}+\widehat{BFH}=180^0\)

Do đó: BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

Câu 8:

a) Xét tứ giác BFEC có 

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 4 2021

Nhờ các bạn giúp giải tiếp câu b và c. Thanks