K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MB=MC=BC/2

Xét ΔMAB có MA=MB và \(\widehat{MBA}=60^0\)

nên ΔMAB đều

b: ΔBAM đều

mà BH là đường cao

nên H là trung điểm của AM

Xét ΔHNM vuông tại H và ΔHBA vuông tại H có

HM=HA

\(\widehat{HMN}=\widehat{HAB}\)(MN//AB)

Do đó: ΔHNM=ΔHBA

=>HN=HB

=>H là trung điểm của BN

Xét tứ giác ABMN có

H là trung điểm chung của AM và BN

BM=BA

Do đó: ABMN là hình thoi

c: ABMN là hình thoi

=>\(\widehat{NMB}=180^0-\widehat{MBA}=180^0-60^0=120^0\)

Xét ΔMNB có \(cosNMB=\dfrac{MN^2+MB^2-BN^2}{2\cdot MN\cdot MB}\)

\(\Leftrightarrow\dfrac{AB^2+AB^2-BN^2}{2\cdot AB\cdot AB}=-\dfrac{1}{2}\)

=>\(2AB^2-BN^2=-AB^2\)

=>\(BN^2=3AB^2\)

Xét ΔMAC có \(cosAMC=\dfrac{MA^2+MC^2-AC^2}{2\cdot MA\cdot MC}\)

=>\(\dfrac{AB^2+AB^2-AC^2}{2\cdot AB\cdot AB}=cos120=\dfrac{-1}{2}\)

=>\(2AB^2-AC^2=-AB^2\)

=>\(AC^2=3AB^2\)

=>\(AC^2=BN^2\)

=>AC=BN

a: Xét ΔBAH và ΔBDH có

BA=BD

AH=DH

BH chung

=>ΔBAD=ΔBDH

b: Xét ΔBAE và ΔBDE có

BA=BD

góc ABE=góc DBE

BE chung

=>ΔBAE=ΔBDE

=>EA=ED và góc BDE=góc BAE=90 độ

=>ΔEAD cân tại E và DE vuông góc BC

c: ED=EA

EA<EM

=>EM>ED

d: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có

BD=BA

góc DBM chung

=>ΔBDM=ΔBAC

=>BM=BC

=>ΔBMC cân tại B

mà BK là trung tuyến

nên BK là phân giác của góc ABC

=>B,E,K thẳng hàng

Bài 1:

a,b: ΔABC cân tại A
mà AM là trung tuyến

nên AM vừa là đường cao, vừa là phân giác

=>góc BAM=góc CAM và AM vuông góc với BC

c: Xét ΔEBC có

EM vừa là đường cao, vừa là trung tuyến

nên ΔEBC cân tại E

d: Xét ΔKCB có

CE là trung tuyến

CE=KB/2

Do đó: ΔKCB vuông tại C

=>KC//AE

loading...  loading...  

15 tháng 12 2022

Xét hình thang ABCD có EG//AB//CD

nên AE/AD=BG/BC

Xét ΔADC có OE//DC

nên OE/DC=AE/AD

Xét ΔBDC có OG//DC

nên OG/DC=BG/BC

=>OE/DC=OG/DC

=>OE=OG

1:góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

2: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

ΔoAC cân tại O

mà OI là trung tuyến

nên OI vuông góc AC

góc BAC=1/2*180=90 độ

góc AHO=góc AIO=góc HAI=90 độ

=>AHOI là hìnhchữ nhật

3:

góc DCA=1/2*sđ cung AC=góc ABC

=>ΔACD đồng dạng vơi ΔCBD

=>CD/BD=AC/BC=2CI/2BO=CI/BO

=>BD/BO=CD/CI

17 tháng 10 2023

a: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của EF

=>E,O,F thẳng hàng

c: Nếu EF cắt BD tại K thì K trùng với O rồi bạn

Xét ΔADC có

AF,DO là trung tuyến

AF cắt DO tại I

Do đó: I là trọng tâm của ΔADC

=>IO=1/3DO

=>\(IK=\dfrac{1}{3}DK\)

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

chị làm hết cho em được không ạ?

 

Chiết suất tuyệt đối của kim cương:

Áp dụng công thức: \(n=\dfrac{c}{v}\)

\(\Rightarrow\)Tôc độ truyền ánh sáng trong kim cương:

\(v=\dfrac{c}{n}=\dfrac{3\cdot10^8}{2,42}=1,24\cdot10^8\)m/s=124000km/h

Chọn B.