tìm x biết (x-1)^2=(2x+14)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(-2x+1\right)\left(x+3\right)+\left(x+1\right)\left(2x-1\right)=14\)
\(\Leftrightarrow-2x^2-6x+x+3+2x^2-x+2x-1=14\)
\(\Leftrightarrow-4x=12\)
hay x=-3
1) \(\Rightarrow x^2+4x+4-x^2+1=9\)
\(\Rightarrow4x=4\Rightarrow x=1\)
2) \(\Rightarrow x\left(2x+7\right)+2\left(2x+7\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=-2\end{matrix}\right.\)
3) \(\Rightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)
\(\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)
Tìm x biết:
a) 3x-|2x+1|=2
b)2.|5x-3|-2x=14
c)|x+1|+|x+2|+|x+3|=4x
d)|x-2|+|3-2x|=2x+1
e)|x-3|=(-2).|x+4|
\(x^2-x\left(x+2\right)=6\)
\(\Leftrightarrow x^2-x^2-2x=6\)
<=> -2x = 6
<=> x = -3
\(3x\left(x-2\right)+2x\left(2-x\right)=x^2-8\)
\(\Leftrightarrow3x\left(x-2\right)-2x\left(x-2\right)=x^2-8\)
\(\Leftrightarrow\left(x-2\right)\left(3x-2x\right)=x^2-8\)
\(\Leftrightarrow\left(x-2\right)x=x^2-8\)
\(\Leftrightarrow x^2-2x=x^2-8\)
\(\Leftrightarrow2x=8\)
<=> x = 4
a/ \(x^2-x\left(x+2\right)=6\)
<=> \(x^2-x^2-2x=6\)
<=> \(-2x=6\)
<=> \(x=-3\)
b/ \(3x\left(x-2\right)+2x\left(2-x\right)=x^2-8\)
<=> \(3x^2-6x+4x-2x^2=x^2-8\)
<=> \(3x^2-2x-2x^2-x^2+8=0\)
<=> \(-2x+8=0\)
<=> \(-2x=-8\)
<=> \(x=4\)
c/ \(3\left(5x-1\right)-x\left(x+1\right)+x^2=14\)
<=> \(15x-3-x^2-x+x^2=14\)
<=> \(14x-3=14\)
<=> \(-3=14-14x\)
<=> \(14\left(1-x\right)=-3\)
<=> \(1-x=\frac{-3}{14}\)
<=> \(-x=\frac{-3}{14}-1\)
<=> \(x=\frac{3}{14}+1\)
<=> \(x=\frac{17}{14}\)
\(\left(2x+1\right)\left(y+2\right)=14\)
\(\Rightarrow\hept{\begin{cases}2x+1\\y+2\end{cases}}\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
mà \(2x+1\) là số lẻ \(\Rightarrow\) \(\left(2x+1\right)\in\left\{\pm1;\pm7\right\}\)
Ta có bảng:
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(y+2\) | \(14\) | \(-14\) | \(2\) | \(-2\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
\(y\) | \(1\) | \(-3\) | \(5\) | \(-9\) |
Vậy \(\left(x,y\right)=\left(0;1\right),\left(-1;-3\right),\left(3;5\right);\left(-4;-9\right)\)
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
\(\left(x-1\right)^2=\left(2x+14\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2x+14\\x-1=-\left(2x+14\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-14\\x-1=-2x-14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\x+2x=-14+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\3x=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\x=-\dfrac{13}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-15;-\dfrac{13}{3}\right\}\)